
Adversarially Robust Coloring for Graph Streams
Amit Chakrabarti, Prantar Ghosh,Manuel Stoeckl · (Dartmouth College)

Links to paper & poster

Coloring graph streams
Want a data structure using limited space
to:
• Receive a sequence of edges of a

graph on n vertices
• At all times, assign colors to all

vertices with no pair sharing an edge
colored alike

• Use a small number of colors in total:
≈ ∆, where ∆ is the maximum degree
of a vertex in the graph

An “oblivious” solution
Assuming edges are independent of the
colors we output, we can solve the
problem with ≈ ∆ colors and only ≈ n bits
of space.
• Start: assign each vertex to one of
∆/ log n groups, at random

• For each edge: if both endpoints are in
the same group, record it in the data
structure; if not, forget about it

• When asked for a coloring:
individually color each group

Output Colors

This data structure fails in the general
case:
• Example: always add an edge between

two vertices of the same color.

• This tricks the data structure into
storing every edge and using ≈ n∆
bits of space, instead of ≈ n

The general/adversarial case is hard
Given a data structure based on a graph, we
can recovermany edges not in the graph.
• Loop:

• Compute a coloring using data structure
• Find edges connecting vertices with the

same color
• Add these edges into the data structure

ALG

ALG

Finding many of the edges not in the graph
requires about as much space as storing
the graph itself.
• Therefore, Ω (n∆) bits of space are

needed for O (∆) coloring

But we can use ∆3 colors
This method uses only ≈ n bits of space.
• Start: form ∆ different random

partitions of the vertices into ∆2 parts,
each. Mark one as “active”.

• For each edge: store it if both
endpoints fall in the same subset of
some partition

• Every n new edges, change which
partition is “active”, and discard the old
partition

• When asked for a coloring: color each
subset of the active partition with a
fresh set of colors
Partition 1 Partition 2 Output

active

active

active

active

active


