Adversarially Robust Coloring in Graph Streams

Amit Chakrabarti Prantar Ghosh Manuel Stoeckl

Department of Computer Science Dartmouth College

Innovations in Theoretical Computer Science 2022

Problem

Results

Simplified proofs/algorithms

Open problems

Adversarially robust streaming¹

- ▶ A two player game between Adversary providing the stream *e*₁, *e*₂,..., and Algorithm producing output *o*₁, *o*₂,...
- Algorithm has limited space to remember stream inputs

- Alg is adversarially robust if low error probability with any adaptive adversary
- Standard streaming model is like having "oblivious adversary"
- All deterministic algorithms are also adversarially robust

¹Adversarial setting is from [Ben-EliezerJayaramWoodruffYogev2020]; see full paper for more history _{3/3}

Problem: streaming graph coloring

- Stream: sequence of edges of an n vertex graph, no repetitions, forming a graph of max degree Δ
- Algorithm must output, at each point, a K-coloring of the graph. (As some graphs need Δ + 1 colors, K ≥ Δ + 1)
- [AssadiChenKhanna19] give an oblivious $\Delta + 1$ coloring algorithm in $\tilde{O}(n)$ space, but adaptive adversaries can break it

Do robust streaming algorithms require significantly more space for this problem?

Lower and upper bounds

• Theorem: any robust K-coloring sketch needs $\Omega\left(\frac{n\Delta^2}{K}\right)$ space

- ► Thus, $O(\Delta)$ coloring needs $\Omega(n\Delta)$ space; with O(n) space, must use $\Omega(\Delta^2)$ colors
- Compare: [AssadiChenSun21]: with $\tilde{O}(n)$ space, deterministic algos must use $\Omega\left(\exp\left(\Delta^{\tilde{O}(1)}\right)\right)$ colors

We find adversarially robust algorithms to:

• $O(\Delta^2)$ -color an edge insertion stream using $\tilde{O}(n\sqrt{\Delta})$ space

 $\blacktriangleright ~ O ~ (\Delta^2) \text{-color an edge insert/delete stream of length } m \text{ using } \tilde{O} ~ (\sqrt{nm}) \text{ space}$

- $O(\Delta^k)$ -color an edge insert/delete stream of length m using $\tilde{O}(n^{1-1/k}m^{1/k})$ space
- $O(\Delta^3)$ -color an edge insertion stream using $\tilde{O}(n)$ space, $\tilde{O}(n\Delta)$ random bits

Lower and upper bounds

• Theorem: any robust K-coloring sketch needs $\Omega\left(\frac{n\Delta^2}{K}\right)$ space

- ► Thus, $O(\Delta)$ coloring needs $\Omega(n\Delta)$ space; with O(n) space, must use $\Omega(\Delta^2)$ colors
- Compare: [AssadiChenSun21]: with $\tilde{O}(n)$ space, deterministic algos must use $\Omega\left(\exp\left(\Delta^{\tilde{O}(1)}\right)\right)$ colors
- We find adversarially robust algorithms to:
 - $O(\Delta^2)$ -color an edge insertion stream using $\tilde{O}(n\sqrt{\Delta})$ space
 - ► $O\left(\Delta^2\right)$ -color an edge insert/delete stream of length m using $\tilde{O}\left(\sqrt{nm}\right)$ space
 - $O(\Delta^k)$ -color an edge insert/delete stream of length m using $\tilde{O}(n^{1-1/k}m^{1/k})$ space
 - $O(\Delta^3)$ -color an edge insertion stream using $\tilde{O}(n)$ space, $\tilde{O}(n\Delta)$ random bits

Lower bound: The subset-avoidance problem

AVOID(t, a, b)

Alice has $U \subseteq [t]$ of size *a*, sends message to Bob

Bob wants to learn any $V \subseteq [t]$ of size *b* disjoint from *U*

Lemma:
$$R_{1/3}^{
ightarrow}\left(extsf{AVOID}\left(t,a,b
ight)
ight)=\Omega\left(ab/t
ight)-O\left(1
ight)$$

Lower bound: Reducing graph coloring to AVOID

Given an adversarially robust sketch, can find many non-edges

- Because sketch works even with adaptive adversary, can add some revealed edges back in, and find even more non-edges
- Can send the sketch as part of a protocol for multiple copies of AVOID
- ► Lower bound on AVOID message size implies the desired lower bound on sketch size

Upper bound: Robust $O\left(\Delta^2\right)$ -coloring with $\tilde{O}\left(n\sqrt{\Delta}\right)$ space

- ► Algorithm maintains √∆ copies of [ACK19] sketch (which is not adversarially robust), and a buffer of incoming edges that is emptied every n√∆ edges
- Every time the buffer is emptied, freeze another sketch
- The product \(\chi_1 \times \chi_2\) of the colorings \(\chi_1\) from the last frozen sketch and \(\chi_2\) from the buffer is a valid coloring for the entire stream up to this point

Upper bound: Robust $O(\Delta^3)$ -coloring with $\tilde{O}(n)$ space and $\tilde{O}(n\Delta)$ random bits

- Every vertex gets a random palette of
 O (log n) colors for each possible value of its degree
- When you add an edge, recolor vertices using palette
- Store all edges which *could* produce a conflict in the future; palettes are small, so there aren't many
- Adversarially robust, because current colors reveal *nothing* about how future colors are decided, making adversary oblivious

Conclusions

- Ω (nΔ²/K) lower bound for robust algorithms to K-color an edge insertion stream of max degree Δ
- $O(\Delta^3)$ robust coloring algorithm using $\tilde{O}(n)$ space, $\tilde{O}(n\Delta)$ random bits
- $O(\Delta^2)$ robust coloring algorithm using $\tilde{O}(n\sqrt{\Delta})$ space, and variations for ins/del streams and color-space tradeoffs (see full paper)

Open problems

- Is the lower bound tight? With Õ(n)-space, it predicts Ω (Δ²) colors needed; best we did is O (Δ³) colors
- Efficient robust coloring algorithms for long ins/del streams
- Find oblivious vs adversarial separation for natural estimation problem, like approximating F₂ over turnstile streams

Conclusions

- Ω (nΔ²/K) lower bound for robust algorithms to K-color an edge insertion stream of max degree Δ
- O (Δ³) robust coloring algorithm using Õ (n) space, Õ (nΔ) random bits
- $O(\Delta^2)$ robust coloring algorithm using $\tilde{O}(n\sqrt{\Delta})$ space, and variations for ins/del streams and color-space tradeoffs (see full paper)

Open problems

- Is the lower bound tight? With Õ(n)-space, it predicts Ω (Δ²) colors needed; best we did is O (Δ³) colors
- Efficient robust coloring algorithms for long ins/del streams
- Find oblivious vs adversarial separation for natural *estimation* problem, like approximating F₂ over turnstile streams