Adversarially Robust Coloring in Graph Streams

Amit Chakrabarti Prantar Ghosh Manuel Stoeckl
Department of Computer Science
Dartmouth College
Innovations in Theoretical Computer Science 2022

Outline

Problem

Results

Simplified proofs/algorithms

Open problems

Adversarially robust streaming ${ }^{1}$

- A two player game between Adversary providing the stream e_{1}, e_{2}, \ldots, and Algorithm producing output o_{1}, o_{2}, \ldots
- Algorithm has limited space to remember stream inputs

- Alg is adversarially robust if low error probability with any adaptive adversary
- Standard streaming model is like having "oblivious adversary"
- All deterministic algorithms are also adversarially robust

[^0]
Problem: streaming graph coloring

- Stream: sequence of edges of an n vertex graph, no repetitions, forming a graph of max degree Δ
- Algorithm must output, at each point, a K-coloring of the graph. (As some graphs need $\Delta+1$ colors, $K \geq \Delta+1$)
- [AssadiChenKhanna19] give an oblivious $\Delta+1$ coloring algorithm in $\tilde{O}(n)$ space, but adaptive adversaries can break it

Do robust streaming algorithms require significantly more space for this problem?

Lower and upper bounds

- Theorem: any robust K-coloring sketch needs $\Omega\left(\frac{n \Delta^{2}}{K}\right)$ space
- Thus, $O(\Delta)$ coloring needs $\Omega(n \Delta)$ space; with $O(n)$ space, must use $\Omega\left(\Delta^{2}\right)$ colors
- Compare: [AssadiChenSun21]: with $\tilde{O}(n)$ space, deterministic algos must use $\Omega\left(\exp \left(\Delta^{O(1)}\right)\right)$ colors
- We find adversarially robust algorithms to:
$\rightarrow O\left(\Delta^{2}\right)$-color an edge insertion stream using $\tilde{O}(n \sqrt{\triangle})$ space
$\Rightarrow O\left(\Delta^{2}\right)$-color an edge insert/delete stream of length m using $\tilde{O}(\sqrt{n m})$ space $\triangleright O\left(\Delta^{k}\right)$-color an edge insert/delete stream of length m using $\tilde{O}\left(n^{1-1 / k} m^{1 / k}\right)$ space
$>O\left(\Delta^{3}\right)$-color an edge insertion stream using $\tilde{O}(n)$ space, $\tilde{O}(n \Delta)$ random bits

Lower and upper bounds

- Theorem: any robust K-coloring sketch needs $\Omega\left(\frac{n \Delta^{2}}{K}\right)$ space
- Thus, $O(\Delta)$ coloring needs $\Omega(n \Delta)$ space; with $O(n)$ space, must use $\Omega\left(\Delta^{2}\right)$ colors
- Compare: [AssadiChenSun21]: with $\tilde{O}(n)$ space, deterministic algos must use $\Omega\left(\exp \left(\Delta^{O(1)}\right)\right)$ colors
- We find adversarially robust algorithms to:
- $O\left(\Delta^{2}\right)$-color an edge insertion stream using $\tilde{O}(n \sqrt{\Delta})$ space
- $O\left(\Delta^{2}\right)$-color an edge insert/delete stream of length m using $\tilde{O}(\sqrt{n m})$ space
$-O\left(\Delta^{k}\right)$-color an edge insert/delete stream of length m using $\tilde{O}\left(n^{1-1 / k} m^{1 / k}\right)$ space
- $O\left(\Delta^{3}\right)$-color an edge insertion stream using $\tilde{O}(n)$ space, $\tilde{O}(n \Delta)$ random bits

Lower bound: The subset-avoidance problem

$$
\operatorname{AVOID}(t, a, b)
$$

Alice has $U \subseteq[t]$ of size a, sends message to Bob

Bob wants to learn any $V \subseteq[t]$ of size b disjoint from U

Lemma: $R_{1 / 3}^{\rightarrow}(\operatorname{AVOID}(t, a, b))=\Omega(a b / t)-O(1)$

Lower bound: Reducing graph coloring to AVOID

- Given an adversarially robust sketch, can find many non-edges

- Because sketch works even with adaptive adversary, can add some revealed edges back in, and find even more non-edges
- Can send the sketch as part of a protocol for multiple copies of AVOID
- Lower bound on AVOID message size implies the desired lower bound on sketch size

Upper bound: Robust $O\left(\Delta^{2}\right)$-coloring with $\tilde{O}(n \sqrt{\Delta})$ space

- Algorithm maintains $\sqrt{\Delta}$ copies of [ACK19] sketch (which is not adversarially robust), and a buffer of incoming edges that is emptied every $n \sqrt{\Delta}$ edges
- Every time the buffer is emptied, freeze another sketch
- The product $\chi_{1} \times \chi_{2}$ of the colorings χ_{1} from the last frozen sketch and χ_{2} from the buffer is a valid coloring for the entire stream up to this point

Upper bound: Robust $O\left(\Delta^{3}\right)$-coloring with $\tilde{O}(n)$ space and $\tilde{O}(n \Delta)$ random bits

- Every vertex gets a random palette of $O(\log n)$ colors for each possible value of its degree
- When you add an edge, recolor vertices using palette
- Store all edges which could produce a conflict in the future; palettes are small, so there aren't many
- Adversarially robust, because current colors reveal nothing about how future colors are decided, making adversary oblivious

Conclusions

- $\Omega\left(n \Delta^{2} / K\right)$ lower bound for robust algorithms to K-color an edge insertion stream of max degree Δ
- $O\left(\Delta^{3}\right)$ robust coloring algorithm using $\tilde{O}(n)$ space, $\tilde{O}(n \Delta)$ random bits
- $O\left(\Delta^{2}\right)$ robust coloring algorithm using $\tilde{O}(n \sqrt{\Delta})$ space, and variations for ins/del streams and color-space tradeoffs (see full paper)
> is the lower bound tight? With
 colors needed; best we did is
\square
- Efficient robust coloring
algorithms for long ins/del streams
\rightarrow Find oblivious vs adversarial separation for natural estimation problem, like approximating F_{2} over turnstile streams

Conclusions

- $\Omega\left(n \Delta^{2} / K\right)$ lower bound for robust algorithms to K-color an edge insertion stream of max degree Δ
- $O\left(\Delta^{3}\right)$ robust coloring algorithm using $\tilde{O}(n)$ space, $\tilde{O}(n \Delta)$ random bits
- $O\left(\Delta^{2}\right)$ robust coloring algorithm using $\tilde{O}(n \sqrt{\Delta})$ space, and variations for ins/del streams and color-space tradeoffs (see full paper)

Open problems

- Is the lower bound tight? With $\tilde{O}(n)$-space, it predicts $\Omega\left(\Delta^{2}\right)$ colors needed; best we did is $O\left(\Delta^{3}\right)$ colors
- Efficient robust coloring algorithms for long ins/del streams
- Find oblivious vs adversarial separation for natural estimation problem, like approximating F_{2} over turnstile streams

[^0]: ${ }^{1}$ Adversarial setting is from [Ben-EliezerJayaramWoodruffYogev2020]; see full paper for more history

