
Coloring in Graph Streams via Deterministic and Adversarially Robust Algorithms
Sepehr Assadi | Amit Chakrabarti | Prantar Ghosh |Manuel Stoeckl
S.A at Rutgers, supported in part by aNSFCAREERGrant CCF-2047061, aGoogle Research gi�, and a Fulcrumaward from theRutgers ResearchCouncil. A.C. andMS. at Dartmouth. P.G. at DIMACS,work done in part at Dartmouth. Thisworkwas supported in part byNSFunder awards CCF-1907738 andCCF-2006589.

To what extent is randomization necessary for

∆-based graph coloring?

Deterministic multi-pass coloring

Multi-pass streaming algorithm:

• Input is a sequence of elements
• In each pass, algorithm processes elements one

by one

• Algorithm has limited working space≪ input size

f (∆)-graph coloring task:

• Stream consists of the edges of a graph with n

vertices andmaximum degree∆

• Output a vertex coloring using f (∆) colors

Immediate prior work

• [ACS22]: CannotO (poly (∆))-color a graph in 1

pass using Õ (n) space with deterministic

algorithm

• [ACS22]O (∆) coloring inO (log ∆) passes

• [GK21]∆+ 1 coloring in distributedmodels

• Many papers with 1-pass randomized algorithms
[ACK19, AA20, ACS22, HKNT22, AKM22] or in

distributedmodels [BKM20, Kuh20, HKNT22]

Our results

• A deterministic streaming algorithm for

(∆ + 1)-coloring usingO (log ∆ log log ∆) passes

andO
(

n (log n)2
)

space

• Inspired by techniques of [GK21] and [ACS22]
• This generalizes to degree+1 list coloring, if the
vertex color lists are provided in a certain way

Multi-pass streaming algorithm, details

• UseO (log ∆) epochs: in each epoch, fix colors for

a constant fraction of the uncolored vertices.

• First epoch: randomly assigning colors in [∆ + 1]

to each vertex, givesO (n) conflicting edges =⇒
have set ofΩ (n) non-conflicting vertices

• Derandomization: use method of conditional
expectations to propose vertex colors withO (n)

conflicting edges

Partially committed coloring (PCC):

• Constrains a color assignment
• Say U is set of vertices whose color was not fixed

• If vertex x /∈ U , its color is χ (x); if x ∈ U , it has a

subset of colors Px from a partition of [∆ + 1]

• Bound on number of conflicting edges of PCC
P = (Px)x∈V is:

Φ (P) =
∑

{x,y}∈G[U]

1Px=Py

(

1

sx
+

1

sy

)

where sx = |Px| − |y ∈ N (x) \ U : χ (y) ∈ Px|.
• sx is≥ the “slack”[HKNT22] of a vertex
• Initial PCC: have Px = [∆ + 1]

• Once |Px| = 1, have a proposed color for x

A B C D E FG

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

PB={1,2}

sB=2

PC={3,4}

sC=1

PD={1,2}

sD=2

PG={3,4}

sG=1

Φ(P) = (1/2+1/1)+(1/2+1/2)+(1/2+1/1)=4

χ(A)=3 χ(E)=4 χ(F)=2

Refining PCC: repeat to reduce
∑

x∈V |Px|
• Pass 1: Compute sx,i for every uncolored vertex x
• From current PCCP , construct familyF of Õ

(

n2
)

“refined” PCCs where avgQ∈FΦ (Q) ≤ Φ (P)
• Passes 2-3: Find aQ ∈ F whereΦ (Q) ≤ Φ (P)
• SetP ← Q, and repeat until all |Px| = 1

Adversarially robust graph coloring

Streaming algorithm:

• Input is a sequence of elements e1, . . . , em
• “tracking” algorithm: emits output oi a�er every
input ei, and is wrong if any output is

Static setting:

• For all valid input streams, Pr [output wrong] ≤ δ

Adversarial setting[BJWY20]:

• An adversary adaptively produces an input
sequence e1, . . . , en, where it chooses input ei
based on the algorithm outputs o1, . . . , oi−1 so far

• “adversarially robust”: for all adversaries making
valid input streams, Pr [output wrong] ≤ δ

f (∆) -graph coloring task

• Receive sequence of edges in a simple graph on n
vertices of max degree∆

• Output a vertex coloring of the edges so far using
f (∆) colors

Immediate prior work

• [CGS22]: adversarially robust algorithm for

O
(

∆3
)

-coloring using Õ (n) space, Õ (n∆)

random bits

• [CGS22]: adversarially robustO
(

∆2
)

coloring

algorithms needΩ (n) space

• Many papers for static setting [BG18, ACK19,
AA20, ACS22, HKNT22]

Our results

• An adversarially robust,O
(

∆5/2
)

-coloring

algorithm using Õ (n) space and oracle access to

Õ (n∆) random bits

• An adversarially robust,O
(

∆3
)

-coloring

algorithm using Õ (n) space.

AnO
(

∆3
)

color Õ (n) space algorithm

• Divide stream into “epochs” of n edges each

• For each epoch i, present output of independent
sub-sketch:

• Pick random hi : [n]→
[

∆2
]

• Before epoch i, record edges {x, y}with
hi (x) = hi (y) into setDi

• During epoch i, record edges {x, y}with
hi (x) = hi (y) into setBi

• Compute (∆ + 1)-coloringχ of edge setDi∪Bi

• For each vertex v, output
(χ (v) , hi (v)) ∈ [∆ + 1]×

[

∆2
]

(1,1)

(2,1)

(2,2)

(2,2)

(3,1)

(3,2)

(3,3)

(2,3)

(2,3)

(1,2)

(1,1)

• Discard sets when no longer needed
• |Di| = O (n/∆)w.h.p. because adversary doesn’t

see hi until epoch i; and |Bi| ≤ n

O
(

∆5/2
)

coloring algorithmwith Õ (n) space

• Di�erent handling for fast vertices (those which
receive≥

√
∆ edges per epoch of n edges)

• Remaining slow vertices form bounded degree

graphsDi ∪Bi =⇒ onlyO
(

∆5/2
)

colors used

Fast vertices:

• Partition vertices by degree into
√
∆ levels

[

1,
√
∆
]

,
[√

∆+ 1, 2
√
∆
]

,. . .
[

∆−
√
∆+ 1,∆

]

• Color each level like an epoch of the example alg.
• Edges may cross levels, and levels coexist,
unlike epochs

• Have
√
∆ levels using∆3/2 ×O

(√
∆
)

colors

each

