Coloring in Graph Streams via Deterministic and Adversarially Robust Algorithms

To what extent is randomization necessary for Δ-based graph coloring?

Deterministic multi-pass coloring

Multi-pass streaming algorithm

- Input is a sequence of elements
- In each pass, algorithm processes elements one by one
- Algorithm has limited working space <<input size $f(\Delta)$-graph coloring task:
- Stream consists of the edges of a graph with n vertices and maximum degree Δ
- Output a vertex coloring using $f(\Delta)$ colors

Immediate prior work

- [ACS22]: Cannot $O($ poly $(\Delta))$-color a graph in pass using $\tilde{O}(n)$ space with deterministic algorithm
- [ACS22] $O(\Delta)$ coloring in $O(\log \Delta)$ passes
- [GK21] $\Delta+1$ coloring in distributed models
- Many papers with 1-pass randomized algorithms [ACK19, AA20, ACS22, HKNT22, AKM22] or in distributed models [BKM20, Kuh20, HKNT22]

Our result

- A deterministic streaming algorithm for $(\Delta+1)$-coloring using $O(\log \Delta \log \log \Delta)$ passes and $O\left(n(\log n)^{2}\right)$ space
- Inspired by techniques of [GK21] and [ACS22]
- This generalizes to degree+1 list coloring, if the vertex color lists are provided in a certain way

Multi-pass streaming algorithm, details

- Use $O(\log \Delta)$ epochs: in each epoch, fix colors for a constant fraction of the uncolored vertices
- First epoch: randomly assigning colors in $[\Delta+1]$ to each vertex, gives $O(n)$ conflicting edges \Longrightarrow have set of $\Omega(n)$ non-conflicting vertices
- Derandomization: use method of conditional expectations to propose vertex colors with $O(n)$ conflicting edges

Partially committed coloring (PCC):

- Constrains a color assignment
- Say U is set of vertices whose color was not fixed
- If vertex $x \notin U$, its color is $\chi(x)$; if $x \in U$, it has a subset of colors P_{x} from a partition of $[\Delta+1]$
- Bound on number of conflicting edges of PCC $\mathcal{P}=\left(P_{x}\right)_{x \in V}$ is

$$
\Phi(\mathcal{P})=\sum_{\{x, y\} \in G[U]} 1_{P_{x}=P_{y}}\left(\frac{1}{s_{x}}+\frac{1}{s_{y}}\right)
$$

$$
\text { where } s_{x}=\left|P_{x}\right|-\left|y \in N(x) \backslash U: \chi(y) \in P_{x}\right|
$$

- s_{x} is $>$ the "slack"[HKNT22] of a vertex
- Initial PCC: have $P_{x}=[\Delta+1]$
- Once $\left|P_{x}\right|=1$, have a proposed color for x $\Phi(\mathrm{P})=(1 / 2+1 / 1)+(1 / 2+1 / 2)+(1 / 2+1 / 1)=4$

Refining PCC: repeat to reduce $\sum_{x \in V}\left|P_{x}\right|$

- Pass 1: Compute $s_{x, i}$ for every uncolored vertex x
- From current PCC \mathcal{P}, construct family \mathcal{F} of $\tilde{O}\left(n^{2}\right)$ "refined" PCCs where $\operatorname{avg}_{Q \in \mathcal{F}} \Phi(Q) \leq \Phi(\mathcal{P})$
- Passes 2-3: Find a $Q \in \mathcal{F}$ where $\Phi(Q) \leq \Phi(\mathcal{P})$
- Set $\mathcal{P} \leftarrow Q$, and repeat until all $\left|P_{x}\right|=1$

Adversarially robust graph coloring

Streaming algorithm:

- Input is a sequence of elements e_{1}, \ldots, e_{m}
- "tracking" algorithm: emits output o_{i} after every input e_{i}, and is wrong if any output is

Static setting:

- For all valid input streams, $\operatorname{Pr}[$ output wrong $] \leq \delta$

Adversarial setting[BJWY20]:

- An adversary adaptively produces an input sequence e_{1}, \ldots, e_{n}, where it chooses input e_{i} based on the algorithm outputs o_{1}, \ldots, o_{i-1} so far
- "adversarially robust": for all adversaries making valid input streams, $\operatorname{Pr}[$ output wrong $] \leq \delta$
$\boldsymbol{f}(\boldsymbol{\Delta})$-graph coloring task
- Receive sequence of edges in a simple graph on n vertices of max degree Δ
- Output a vertex coloring of the edges so far using $f(\Delta)$ colors

Immediate prior work

- [CGS22]: adversarially robust algorithm for $O\left(\Delta^{3}\right)$-coloring using $\tilde{O}(n)$ space, $\tilde{O}(n \Delta)$ random bits
- [CGS22]: adversarially robust $O\left(\Delta^{2}\right)$ coloring algorithms need $\Omega(n)$ space
- Many papers for static setting [BG18, ACK19, AA20, ACS22, HKNT22]

Our results

- An adversarially robust, $O\left(\Delta^{5 / 2}\right)$-coloring algorithm using $\tilde{O}(n)$ space and oracle access to $\tilde{O}(n \Delta)$ random bits
- An adversarially robust, $O\left(\Delta^{3}\right)$-coloring algorithm using $\tilde{O}(n)$ space

An $O\left(\Delta^{3}\right)$ color $\tilde{O}(n)$ space algorithm

- Divide stream into "epochs" of n edges each
- For each epoch i, present output of independent sub-sketch:
- Pick random $h_{i}:[n] \rightarrow\left[\Delta^{2}\right]$
- Before epoch i, record edges $\{x, y\}$ with $h_{i}(x)=h_{i}(y)$ into set D_{i}
- During epoch i, record edges $\{x, y\}$ with $h_{i}(x)=h_{i}(y)$ into set B_{i}
- Compute $(\Delta+1)$-coloring χ of edge set $D_{i} \cup B_{i}$
- For each vertex v, output

$$
\left(\chi(v), h_{i}(v)\right) \in[\Delta+1] \times\left[\Delta^{2}\right]
$$

- Discard sets when no longer needed
- $\left|D_{i}\right|=O(n / \Delta)$ w.h.p. because adversary doesn't see h_{i} until epoch i; and $\left|B_{i}\right| \leq n$

$\mathrm{O}\left(\Delta^{5 / 2}\right)$ coloring algorithm with $\tilde{O}(n)$ space

- Different handling for fast vertices (those which receive $\geq \sqrt{\Delta}$ edges per epoch of n edges)
- Remaining slow vertices form bounded degree graphs $D_{i} \cup B_{i} \Longrightarrow$ only $O\left(\Delta^{5 / 2}\right)$ colors used

Fast vertices:

- Partition vertices by degree into $\sqrt{\Delta}$ levels $[1, \sqrt{\Delta}],[\sqrt{\Delta}+1,2 \sqrt{\Delta}], \ldots[\Delta-\sqrt{\Delta}+1, \Delta]$
- Color each level like an epoch of the example alg
- Edges may cross levels, and levels coexist, unlike epochs
- Have $\sqrt{\Delta}$ levels using $\Delta^{3 / 2} \times O(\sqrt{\Delta})$ colors each

