Sepehr Assadi | Amit Chakrabarti | Prantar Ghosh | Manuel Stoeckl

To what extent is randomization necessary for
A-based graph coloring?

Deterministic multi-pass coloring

Multi-pass streaming algorithm:
e Inputis asequence of elements

e In each pass, algorithm processes elements one
by one

e Algorithm has limited working space < input size

f (A)-graph coloring task:
e Stream consists of the edges of a graph with n
vertices and maximum degree A

e QOutput a vertex coloring using f (A) colors
Immediate prior work

e [ACS22]: Cannot O (poly (A))-colora graphin 1
pass using O (n) space with deterministic
algorithm

e [ACS22] O (A) coloringin O (log A) passes

e [GK21] A + 1 coloring in distributed models

e Many papers with 1-pass randomized algorithms
[ACK19, AA20, ACS22, HKNT22, AKM22] or in
distributed models [BKM20, Kuh20, HKNT22]

Our results

e Adeterministic streaming algorithm for
(A + 1)-coloring using O (log Aloglog A) passes
and O (n (log n)Q) space

e Inspired by techniques of [GK21] and [ACS22]

e This generalizes to degree+1 list coloring, if the
vertex color lists are provided in a certain way

Multi-pass streaming algorithm, details

e Use O (log A) epochs: in each epoch, fix colors for

a constant fraction of the uncolored vertices.

e First epoch: randomly assigning colorsin [A + 1
to each vertex, gives O (n) conflicting edges —
have set of (2 (n) non-conflicting vertices

e Derandomization: use method of conditional
expectations to propose vertex colors with O (n)
conflicting edges

Partially committed coloring (PCC):

e Constrains a color assignment
e Say U is set of vertices whose color was not fixed

o Ifvertexx ¢ U,itscolorisx (z);ifx € U, ithasa
subset of colors P, from a partition of [A + 1]

e Bound on number of conflicting edges of PCC
P = (P$>:,U€V IS:

O(P)=)

(-)
lp—p, |

Se Sy
{z,y}eG|U]

wheres, = |P,| — ly € N (z)\ U : x (y) € P.|.
e s.is > the “slack”[HKNT22] of a vertex
e Initial PCC: have P, = |A + 1]

e Once |P,| = 1, have a proposed color for x
DO(P) = (1/24+1/1)+(1/2+1/2)+(1/2+1/1)=4

@/ GAG » ©® @ E

x(A)=3 [1]213]4] [1]2]3]4] [1]2]3]4] x(E)=4 [1[2]3]4] x(F)=2
Pa={1,2} Pc={3,4} Po={1,2} Pe=({3,4}
Sp=2 Sc=1 Sp=2 Sg=1

Refining PCC: repeat to reduce » |, ||
e Pass 1: Compute s, ; for every uncolored vertex x
e From current PCC P, construct family F of O (nQ)
“refined” PCCs where avg, . z® (Q) < (P)
e Passes2-3:Finda (@ € F where® (Q) < O (P)
o SetP <+ (),andrepeatuntilall |P,| =1

Coloring in Graph Streams via Deterministic and Adversarially Robust Algorithms

Adversarially robust graph coloring

Streaming algorithm:

e Inputis asequence ofelementsey, ... e,

e “tracking” algorithm: emits output o; after every
input ¢;, and is wrong if any output is

Static setting:
e Forall valid input streams, Pr joutput wrong| < ¢
Adversarial setting[BJWY20]:

e An adversary adaptively produces an input
sequenceey,...,e,, Where it chooses input ¢,
based on the algorithm outputs oy, ..., 0,1 so far

e “adversarially robust”: for all adversaries making
valid input streams, Pr [output wrong| < ¢

f (A) -graph coloring task

e Receive sequence of edges in a simple graph onn

vertices of max degree A

e Output a vertex coloring of the edges so far using
f (A) colors

Immediate prior work

e [CGS22]: adversarially robust algorithm for
O (A?)-coloring using O (n) space, O (nA)
random bits

o [CGS22]: adversarially robust O (A?) coloring
algorithms need (2 (n) space

e Many papers for static setting [BG18, ACK19,
AA20, ACS22, HKNT22]

Our results

e An adversarially robust, O (A°/?)-coloring
algorithm using O (n) space and oracle access to
O (nA\) random bits

e An adversarially robust, O (A*)-coloring
algorithm using O (n) space.

Link to paper

An O (A3%) color O (n) space algorithm

e Divide stream into “epochs” of n edges each
e For each epoch i, present output of independent
sub-sketch:
e Pickrandom h; : [n] — |A?
e Before epoch i, record edges {x, y} with
hi; (z) = h; (y) into set D,
e During epoch i, record edges {x, y} with
h; (z) = h; (y) into set B,
e Compute (A + 1)-coloring y of edge set D; U B;
e For each vertex v, output
(X (v) i (v)) € [A+1] x [A7]

(3,3)

e Discard sets when no longer needed

o |D;| =0 (n/A)w.h.p. because adversary doesn’t
see h; untilepoch i;and |B;| < n

O (A%?) coloring algorithm with O (n) space

e Different handling for fast vertices (those which
receive > /A edges per epoch of n edges)

e Remaining slow vertices form bounded degree
graphs D; U B; = only O (A”?) colors used
Fast vertices:
e Partition vertices by degree into v/A levels

L VAL VAL 1 2VA]L A= VA+1.A

e Color each level like an epoch of the example alg.

e Edges may cross levels, and levels coexist,
unlike epochs

e Have VA levels using A%? x O (ﬂ) colors
each

