Coloring in Graph Streams via Deterministic and Adversarially Robust Algorithms

Sepehr Assadi (Rutgers) Amit Chakrabarti (Dartmouth) Prantar Ghosh (DIMACS)
Manuel Stoeckl (Dartmouth)*

Symposium on Principles of Database Systems 2023

* This work was supported in part by NSF under awards CCF-1907738 and CCF-2006589. S.A's research supported in part by a NSF CAREER Grant CCF-2047061, a Google Research gift, and a Fulcrum award from the Rutgers Research Council.
Δ-based coloring

- Graph $G = (V, E)$ with n vertices and max degree Δ
- **Vertex coloring**: assign a color to each vertex G so that no edge connects two vertices of the same color

Finding vertex colorings with a *minimum* number of colors is NP-hard

Δ-based colorings use number of colors depending on Δ.

- Greedy algorithm: $\Delta + 1$ colors
- Linial’s algorithm\[Linial92\]: $O(\Delta^2)$ colors
- Brook’s theorem: Δ colors (if possible)
Δ-based coloring

- Graph $G = (V, E)$ with n vertices and max degree $Δ$
- **Vertex coloring**: assign a color to each vertex G so that no edge connects two vertices of the same color

Finding vertex colorings with a *minimum* number of colors is NP-hard

- **Δ-based colorings** use number of colors depending on $Δ$.
 - Greedy algorithm: $Δ + 1$ colors
 - Linial’s algorithm [Linial92]: $O(Δ^2)$ colors
 - Brook’s theorem: $Δ$ colors (if possible)
Δ-based coloring

- Graph $G = (V, E)$ with n vertices and max degree Δ
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

Finding vertex colorings with a *minimum* number of colors is NP-hard

Δ-based colorings use number of colors depending on Δ.

- Greedy algorithm: $\Delta + 1$ colors
- Linial’s algorithm\[^1\]: $O(\Delta^2)$ colors
- Brook’s theorem: Δ colors (if possible)
Δ-based coloring

- Graph $G = (V, E)$ with n vertices and max degree $Δ$
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

Finding vertex colorings with a minimum number of colors is NP-hard

- Δ-based colorings use number of colors depending on $Δ$.
 - Greedy algorithm: $Δ + 1$ colors
 - Linial’s algorithm [Linial92]: $O(Δ^2)$ colors
 - Brook’s theorem: $Δ$ colors (if possible)
To what extent is randomization necessary for streaming algorithms that compute a Δ-based coloring?
Outline

Deterministic multi-pass \((\Delta + 1)\) coloring

Adversarially robust coloring with \(O(\Delta^{2.5})\) colors
Deterministic multi-pass $(\Delta + 1)$-coloring on a graph stream

Input:
- A graph $G = (V, E)$ on n vertices with maximum degree Δ, provided as a sequence of edges

Processing:
- Limited working space: only “semi-streaming” ($\tilde{O}(n)$, where $\tilde{O}(\cdot)$ hides polylog factors in n and Δ).
- For each pass, algorithm reads the input edge sequence in order

Output:
- A coloring $\chi : V \to [\Delta + 1]$, so that if $\{u, v\} \in E$, then $\chi(u) \neq \chi(v)$

\dagger Storing G takes $\tilde{O}(n\Delta)$ space.
Deterministic multi-pass $(\Delta + 1)$-coloring on a graph stream

Input:
- A graph $G = (V, E)$ on n vertices with maximum degree Δ, provided as a sequence of edges

Processing:
- Limited working space: only “semi-streaming” ($\tilde{O}(n)$, where $\tilde{O}(\cdot)$ hides polylog factors in n and Δ.)
- For each pass, algorithm reads the input edge sequence in order

Output:
- A coloring $\chi : V \rightarrow [\Delta + 1]$, so that if $\{u, v\} \in E$, then $\chi(u) \neq \chi(v)$

†Storing G takes $\tilde{O}(n\Delta)$ space.
Deterministic multi-pass \((\Delta + 1)\)-coloring on a graph stream

Input:
- A graph \(G = (V, E)\) on \(n\) vertices with maximum degree \(\Delta\), provided as a sequence of edges

Processing:
- Limited working space: only “semi-streaming” \((\tilde{O}(n))\), where \(\tilde{O}(\cdot)\) hides polylog factors in \(n\) and \(\Delta\).†
- For each pass, algorithm reads the input edge sequence in order

Output:
- A coloring \(\chi : V \rightarrow [\Delta + 1]\), so that if \(\{u, v\} \in E\), then \(\chi(u) \neq \chi(v)\)

†Storing \(G\) takes \(\tilde{O}(n\Delta)\) space.
Selected prior work

- The standard greedy algorithm can \((\Delta + 1)\)-color a graph of max degree \(\Delta\), but has no semi-streaming implementation
 - [AssadiChenKhanna19] Single-pass randomized streaming algorithm for \((\Delta + 1)\) coloring, using semi-streaming space
 - [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with \(\text{poly}(\Delta)\) colors
 - [AssadiChenSun22] But with \(O(\log \Delta)\) passes, can obtain an \(O(\Delta)\) coloring

Question

Is there a multi-pass deterministic semi-streaming space algorithm for \(\Delta + 1\) coloring?

- [GhaffariKuhn21] Deterministic \((\Delta + 1)\) coloring algorithm in the “LOCAL” and “CONGEST” models of distributed algorithms.
 - [HalldórssonNolinKuhnTonoyan22] “degree + 1” coloring
Selected prior work

- The standard greedy algorithm can $(\Delta + 1)$-color a graph of max degree Δ, but has no semi-streaming implementation

- [AssadiChenKhanna19] Single-pass randomized streaming algorithm for $(\Delta + 1)$ coloring, using semi-streaming space

- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with $\text{poly}(\Delta)$ colors

- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta + 1$ coloring?

- [GhaffariKuhn21] Deterministic $(\Delta + 1)$ coloring algorithm in the “LOCAL” and “CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] “degree + 1” coloring
Selected prior work

- The standard greedy algorithm can $(\Delta + 1)$-color a graph of max degree Δ, but has no semi-streaming implementation.

- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with $\text{poly}(\Delta)$ colors.

- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring.

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta + 1$ coloring?

- [GhaffariKuhn21] Deterministic $(\Delta + 1)$ coloring algorithm in the “LOCAL” and “CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] “degree + 1” coloring.
Selected prior work

- The standard greedy algorithm can $(\Delta + 1)$-color a graph of max degree Δ, but has no semi-streaming implementation.

- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with $\text{poly}(\Delta)$ colors.

- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring.

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta + 1$ coloring?

- [GhaffariKuhn21] Deterministic $(\Delta + 1)$ coloring algorithm in the “LOCAL” and “CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] “degree + 1” coloring.
Our results

Theorem

There is a deterministic streaming algorithm for \((\Delta + 1)\)-coloring which uses \(O(\log \Delta \log \log \Delta)\) passes and \(O\left(n (\log n)^2\right)\) space.

Theorem

Same bounds hold for (degree+1) list coloring (D1LC), where each vertex \(x \in V\) has associated list \(L_x\) of permitted colors, where \(|L_x| \geq \deg x + 1\).

▶ Issue: storing color lists would take up to \(\tilde{\Theta}(n\Delta)\) space. See paper.
Our results

Theorem
There is a deterministic streaming algorithm for $(\Delta + 1)$-coloring which uses $O(\log \Delta \log \log \Delta)$ passes and $O\left(n (\log n)^2 \right)$ space.

Theorem
Same bounds hold for (degree+1) list coloring (D1LC), where each vertex $x \in V$ has associated list L_x of permitted colors, where $|L_x| \geq \deg x + 1$.

- Issue: storing color lists would take up to $\tilde{\Theta}(n\Delta)$ space. See paper.
Our results

Theorem

There is a deterministic streaming algorithm for $(\Delta + 1)$*-coloring which uses* $O(\log \Delta \log \log \Delta)$* passes and* $O\left(n (\log n)^2\right)$* space*

Theorem

Same bounds hold for $(\text{degree} + 1)$*-list coloring (D1LC), where each vertex* $x \in V$* has associated list* L_x* of permitted colors, where* $|L_x| \geq \deg x + 1$.*

- *Issue:* storing color lists would take up to $\tilde{\Theta}(n\Delta)$ space. See paper.
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors

Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors
- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors
- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors
- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors

Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors
- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors

- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors
- Example:
High level description for deterministic $\Delta + 1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \implies can fix a constant fraction of proposed colors

Example:
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta + 1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
 - Have a cost function\(^{‡}\) bounding the final number of monochromatic edges
 - Pass 1: Compute “slack” values§, where if x has color set S, then

 \[
 \text{slack}(x, S) = |S| - |\{\{y, x\} \in E : y's \text{ color fixed and in } S\}|\n \]
 - Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \Delta)$ refinements, have a single proposed color for every vertex.

\(^{‡}\)Similar: [Kuhn20] and [GhaffariKuhn21]

\(^{§}\)Similar: [HalldórssonNolinKuhnTonoyan22]
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set \([\Delta + 1]\) of all colors

- Repeatedly choose a subset of the current color set for each vertex
 - Have a cost function\(^\ddagger\) bounding the final number of monochromatic edges
 - Pass 1: Compute “slack” values\(^\S\), where if \(x\) has color set \(S\), then
 \[
 \text{slack}(x, S) = |S| - \{|\{y, x\} \in E : y’s \text{ color fixed and in } S\}|
 \]
 - Pass 2-3: Use hash family to search for good color subset assignment

- After \(O(\log \Delta)\) refinements, have a single proposed color for every vertex.

\(^\ddagger\)Similar: [Kuhn20] and [GhaffariKuhn21]

\(^\S\)Similar: [HalldórssonNolinKuhnTonoyan22]
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta + 1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
 - Have a cost function† bounding the final number of monochromatic edges
 - Pass 1: Compute “slack” values§, where if x has color set S, then
 \[
 \text{slack}(x, S) = |S| - |\{y, x \in E : y’s \text{ color fixed and in } S\}|\]
 - Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \Delta)$ refinements, have a single proposed color for every vertex.

†Similar: [Kuhn20] and [GhaffariKuhn21]

§Similar: [HalldórssonNolinKuhnTonoyan22]
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set \([\Delta + 1]\) of all colors
- Repeatedly choose a subset of the current color set for each vertex
 - Have a cost function\(^\ddagger\) bounding the final number of monochromatic edges
 - Pass 1: Compute “slack” values\(^\S\), where if \(x\) has color set \(S\), then
 \[
 \text{slack}(x, S) = |S| - |\{y, x \in E : y's \text{ color fixed and in } S\}|
 \]
 - Pass 2-3: Use hash family to search for good color subset assignment
- After \(O(\log \Delta)\) refinements, have a single proposed color for every vertex.

\(^\ddagger\)Similar: [Kuhn20] and [GhaffariKuhn21]
\(^\S\)Similar: [HalldórssonNolinKuhnTonoyan22]
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set \([\Delta + 1]\) of all colors
- Repeatedly choose a subset of the current color set for each vertex
 - Have a cost function\(^{‡}\) bounding the final number of monochromatic edges
 - Pass 1: Compute “slack” values\(^{§}\), where if \(x\) has color set \(S\), then
 \[
 \text{slack}(x, S) = |S| - |\{y, x \in E : y's \text{ color fixed and in } S\}|
 \]
 - Pass 2-3: Use hash family to search for good color subset assignment
- After \(O(\log \Delta)\) refinements, have a single proposed color for every vertex.

\(^{‡}\) Similar: [Kuhn20] and [GhaffariKuhn21]

\(^{§}\) Similar: [HalldórssonNolinKuhnTonoyan22]
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_1, e_2, \ldots e_i$, and Algorithm produces outputs χ_1, \ldots, χ_i solving task for stream up to this point.

- Adversary’s chosen inputs may depend on prior outputs of the Algorithm.

- Algorithm is “adversarially robust” if it has low error rate against any Adversary strategy
 - Example: Input generated in real time – outputs may influence future inputs
 - Sub-component of larger algorithm

See [Ben-EliezerJayaramWoodruffYogev20] for more explanation
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_1, e_2, \ldots e_i$, and Algorithm produces outputs χ_1, \ldots, χ_i solving task for stream up to this point.
- Adversary’s chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is “adversarially robust” if it has low error rate against any Adversary strategy
 - Example: Input generated in real time – outputs may influence future inputs
 - Sub-component of larger algorithm

See [Ben-EliezerJayaramWoodruffYogev20] for more explanation
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs e_1, e_2, \ldots, e_i, and Algorithm produces outputs χ_1, \ldots, χ_i solving task for stream up to this point.
- Adversary’s chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is “adversarially robust” if it has low error rate against any Adversary strategy
 - Example: Input generated in real time – outputs may influence future inputs
 - Sub-component of larger algorithm

See [Ben-EliezerJayaramWoodruffYogev20] for more explanation.
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_1, e_2, \ldots e_i$, and Algorithm produces outputs χ_1, \ldots, χ_i solving task for stream up to this point.
- Adversary’s chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is “adversarially robust” if it has low error rate against any Adversary strategy
 - Example: Input generated in real time – outputs may influence future inputs
 - Sub-component of larger algorithm

See [Ben-EliezerJayaramWoodruffYogev20] for more explanation
Selected prior work

Task: Δ-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for $(\Delta + 1)$-coloring in semi-streaming ($\tilde{O}(n)$) space.

- [ChakrabartiGhoshStoeckl22] An adversarially robust $O(\Delta^3)$-coloring algorithm using semi-streaming space and access to $\tilde{O}(n\Delta)$ read-only random bits.

- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for $o(\Delta^2)$-coloring algorithms require $\tilde{\Omega}(n)$ space.

Question

Is there an adversarially robust $O(\Delta^2)$-coloring algorithm in semi-streaming space which only needs $\tilde{O}(n)$ random bits?
Selected prior work

Task: \(\Delta\)-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for \((\Delta + 1)\)-coloring in semi-streaming \((\tilde{O}(n))\) space.

- [ChakrabartiGhoshStoeckl22] An adversarially robust \(O(\Delta^3)\)-coloring algorithm using semi-streaming space and access to \(\tilde{O}(n\Delta)\) read-only random bits

- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for \(o(\Delta^2)\)-coloring algorithms require \(\tilde{\Omega}(n)\) space

Question

Is there an adversarially robust \(O(\Delta^2)\)-coloring algorithm in semi-streaming space which only needs \(\tilde{O}(n)\) random bits?
Selected prior work

Task: Δ-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for $(\Delta + 1)$-coloring in semi-streaming ($\tilde{O}(n)$) space.

- [ChakrabartiGhoshStoeckl22] An adversarially robust $O(\Delta^3)$-coloring algorithm using semi-streaming space and access to $\tilde{O}(n\Delta)$ read-only random bits

- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for $o(\Delta^2)$-coloring algorithms require $\tilde{\Omega}(n)$ space

Question

Is there an adversarially robust $O(\Delta^2)$-coloring algorithm in semi-streaming space which only needs $\tilde{O}(n)$ random bits?
Our results

Theorem

There is an adversarially robust streaming algorithm for $O(\Delta^{2.5})$-coloring using $\tilde{O}(n)$ space and $\tilde{O}(n\Delta)$ random bits.

- Space/color tradeoff: for any $\beta \in [0, 1]$, get $\tilde{O}(\Delta^{5/2-3\beta/2})$ colors with $\tilde{O}(n\Delta^{\beta})$ space and $\tilde{O}(n\Delta)$ random bits.

Theorem

There is an adversarially robust streaming algorithm for $O(\Delta^3)$ coloring using $\tilde{O}(n)$ space (and no extra random bits).
Our results

Theorem

There is an adversarially robust streaming algorithm for \(O(\Delta^{2.5}) \)-coloring using \(\tilde{O}(n) \) space and \(\tilde{O}(n\Delta) \) random bits.

- **Space/color tradeoff:** for any \(\beta \in [0, 1] \), get \(\tilde{O}(\Delta^{5/2-3\beta/2}) \) colors with \(\tilde{O}(n\Delta^\beta) \) space and \(\tilde{O}(n\Delta) \) random bits.

Theorem

There is an adversarially robust streaming algorithm for \(O(\Delta^3) \) coloring using \(\tilde{O}(n) \) space (and no extra random bits).
Our results

Theorem
There is an adversarially robust streaming algorithm for $O(\Delta^{2.5})$-coloring using $\tilde{O}(n)$ space and $\tilde{O}(n\Delta)$ random bits.

- Space/color tradeoff: for any $\beta \in [0, 1]$, get $\tilde{O}(\Delta^{5/2-3\beta/2})$ colors with $\tilde{O}(n\Delta^\beta)$ space and $\tilde{O}(n\Delta)$ random bits.

Theorem
There is an adversarially robust streaming algorithm for $O(\Delta^3)$ coloring using $\tilde{O}(n)$ space (and no extra random bits).
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition \(h : V \to [k] \)
- Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)
- Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v)) \)
- Before \(h \) is active, \(|D| \) is small
- While \(h \) is active, \(|D| \) can grow quickly
- After \(h \) is active, discard \(D \)
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition \(h : V \rightarrow [k] \)

Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)

Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v)) \)

Before \(h \) is active, \(|D| \) is small
While \(h \) is active, \(|D| \) can grow quickly
After \(h \) is active, discard \(D \)
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition \(h : V \rightarrow [k] \)
- Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)
- Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v))\)
- Before \(h \) is active, \(|D|\) is small
- While \(h \) is active, \(|D|\) can grow quickly
- After \(h \) is active, discard \(D \)
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- *Before* h is active, $|D|$ is small
- *While* h is active, $|D|$ can grow quickly
- *After* h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- **Before** h is active, $|D|$ is small
- **While** h is active, $|D|$ can grow quickly
- **After** h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \to [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition \(h : V \rightarrow [k] \)
- Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)
- Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v)) \)

Before \(h \) is active, \(|D| \) is small
While \(h \) is active, \(|D| \) can grow quickly
After \(h \) is active, discard \(D \)
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \rightarrow [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition $h : V \to [k]$
- Store edge $\{a, b\}$ into set D if $h(a) = h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $\chi \times h$

0 10 20
active time interval
inactive
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition \(h : V \rightarrow [k] \)
- Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)
- Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v)) \)
- Before \(h \) is active, \(|D| \) is small
- While \(h \) is active, \(|D| \) can grow quickly
- After \(h \) is active, discard \(D \)
Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges

- Random partition \(h : V \rightarrow [k] \)
- Store edge \(\{a, b\} \) into set \(D \) if \(h(a) = h(b) \)
- Compute coloring \(\chi \) of \(D \), and color \(v \) with \((h(v), \chi(v)) \)
- Before \(h \) is active, \(|D| \) is small
- While \(h \) is active, \(|D| \) can grow quickly
- After \(h \) is active, discard \(D \)
High level description of $O(\Delta^{2.5})$-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion patterns.

“Slow” vertices

- $\leq \sqrt{\Delta}$ incident edges in a batch of n

“Fast” vertices

- $> \sqrt{\Delta}$ incident edges in a batch of n
- Degree-linked product coloring instances

Each part: $O(\Delta^{1/2})$ colors

- $\Delta^{3/2}$ parts each
- Δ^2 parts
- Each part: $O(\Delta^{1/2})$ colors
High level description of $O(\Delta^{2.5})$-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion patterns.

“Slow” vertices
- $\leq \sqrt{\Delta}$ incident edges in a batch of n
- Time-linked product coloring instances

“Fast” vertices
- $> \sqrt{\Delta}$ incident edges in a batch of n
- Degree-linked product coloring instances

Each part: $O(\Delta^{1/2})$ colors

- $\Delta^{3/2}$ parts each
- Δ^{2} parts
- Δ instances
High level description of $O(\Delta^{2.5})$-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion patterns.

“Slow” vertices
- $\leq \sqrt{\Delta}$ incident edges in a batch of n
- Time-linked product coloring instances

“Fast” vertices
- $> \sqrt{\Delta}$ incident edges in a batch of n
- Degree-linked product coloring instances

Each part: $O(\Delta^{1/2})$ colors

- $\Delta^{3/2}$ parts each
- Δ^{2} parts
- Δ instances

Each part: $O(\Delta^{1/2})$ colors

- $\Delta^{3/2}$ parts each
- Δ^{2} parts
- Δ instances
Summary

▶ A multi-pass deterministic streaming algorithm which outputs a \((\Delta + 1)\)-vertex-coloring of an input graph of max degree \(\leq \Delta\), using semi-streaming space.

▶ A single-pass adversarially robust streaming algorithm which outputs an \(O(\Delta^{2.5})\)-vertex-coloring of an input graph of max degree \(\leq \Delta\), using semi-streaming space (\& long random string).

▶ Open problems:
 ▶ Is there a 2-pass deterministic streaming algorithm in semi-streaming space using \(O(\Delta)\) colors?
 ▶ Is there an adversarially robust streaming algorithm in semi-streaming space using \(O(\Delta^2)\) colors, and \(\tilde{O}(n)\) bits of randomness?
A multi-pass deterministic streaming algorithm which outputs a $(\Delta + 1)$-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space.

A single-pass adversarially robust streaming algorithm which outputs an $O(\Delta^{2.5})$-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space (and long random string).

Open problems:

- Is there a 2-pass deterministic streaming algorithm in semi-streaming space using $O(\Delta)$ colors?
- Is there an adversarially robust streaming algorithm in semi-streaming space using $O(\Delta^2)$ colors, and $\tilde{O}(n)$ bits of randomness?