Coloring in Graph Streams

 via Deterministic and Adversarially Robust AlgorithmsSepehr Assadi (Rutgers) Amit Chakrabarti (Dartmouth)
Prantar Ghosh (DIMACS) Manuel Stoeckl (Dartmouth)*

Symposium on Principles of Database Systems 2023

Slides CC-BY-SA 4.0, available at https://mstoeckl.com/. Full paper at https://arxiv.org/abs/2212.10641
*This work was supported in part by NSF under awards CCF-1907738 and CCF-2006589. S.A's research supported in part by a

Δ-based coloring

- Graph $G=(V, E)$ with n vertices and max degree Δ
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

\rightarrow Finding vertex colorings with a minimum number of colors is NP-hard
- \triangle-based colorings use number of colors depending on \triangle.
- Greedy algorithm: $\Delta+1$ colors
- Linial's algorithm[Linial92]: $O\left(\Delta^{2}\right)$ colors
- Brook's theorem: Δ colors (if possible)

Δ-based coloring

- Graph $G=(V, E)$ with n vertices and max degree Δ
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

- Finding vertex colorings with a minimum number of colors is NP-hard
$\rightarrow \Delta$-based colorings use number of colors depending on Δ.
- Greedy algorithm: $\Delta+1$ colors
- Linial's algorithm[Linial92]: $O\left(\Delta^{2}\right)$ colors
- Brook's theorem: Δ colors (if possible)

Δ-based coloring

- Graph $G=(V, E)$ with n vertices and max degree Δ
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

- Finding vertex colorings with a minimum number of colors is NP-hard
- Δ-based colorings use number of colors depending on Δ.
- Greedy algorithm: $\Delta+1$ colors
- Linial's algorithm[Linial92]: $O\left(\Delta^{2}\right)$ colors
- Brook's theorem: Δ colors (if possible)

Δ-based coloring

- Graph $G=(V, E)$ with n vertices and max degree Δ
- Vertex coloring: assign a color to each vertex G so that no edge connects two vertices of the same color

- Finding vertex colorings with a minimum number of colors is NP-hard
- Δ-based colorings use number of colors depending on Δ.
- Greedy algorithm: $\Delta+1$ colors
- Linial's algorithm[Linial92]: $O\left(\Delta^{2}\right)$ colors
- Brook's theorem: Δ colors (if possible)

To what extent is randomization necessary for streaming algorithms that compute a Δ-based coloring?

Outline

Deterministic multi-pass ($\Delta+1$) coloring

Adversarially robust coloring with $O\left(\Delta^{2.5}\right)$ colors

Deterministic multi-pass $(\Delta+1)$-coloring on a graph stream

Input:

- A graph $G=(V, E)$ on n vertices with maximum degree Δ, provided as a sequence of edges

Processing:

- Limited working space: only "semi-streaming" ($\tilde{O}(n)$, where $\tilde{O}(\cdot)$ hides polylog factors in n and Δ. $)^{\dagger}$
- For each pass, algorithm reads the input edge sequence in order

Output:
\rightarrow A coloring $\chi: V \rightarrow[\Delta+1]$, so that if $\{u, v\} \in E$, then $\chi(u) \neq \chi(v)$

Deterministic multi-pass $(\Delta+1)$-coloring on a graph stream

Input:

- A graph $G=(V, E)$ on n vertices with maximum degree Δ, provided as a sequence of edges

Processing:

- Limited working space: only "semi-streaming" ($\tilde{O}(n)$, where $\tilde{O}(\cdot)$ hides polylog factors in n and Δ. $)^{\dagger}$
- For each pass, algorithm reads the input edge sequence in order

Output:
\rightarrow A coloring $\chi: V \rightarrow[\Delta+1]$, so that if $\{u, v\} \in E$, then $\chi(u) \neq \chi(v)$

[^0]
Deterministic multi-pass $(\Delta+1)$-coloring on a graph stream

Input:

- A graph $G=(V, E)$ on n vertices with maximum degree Δ, provided as a sequence of edges

Processing:

- Limited working space: only "semi-streaming" ($\tilde{O}(n)$, where $\tilde{O}(\cdot)$ hides polylog factors in n and Δ. $)^{\dagger}$
- For each pass, algorithm reads the input edge sequence in order

Output:

- A coloring $\chi: V \rightarrow[\Delta+1]$, so that if $\{u, v\} \in E$, then $\chi(u) \neq \chi(v)$

[^1]
Selected prior work

- The standard greedy algorithm can $(\Delta+1)$-color a graph of max degree Δ, but has no semi-streaming implementation
- [AssadiChenKhanna19] Single-pass randomized streaming algorithm for $(\Delta+1)$ coloring, using semi-streaming space
- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with poly (Δ) colors
- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta+1$ coloring?

- [GhaffariKuhn21] Deterministic $(\Delta+1)$ coloring algorithm in the "LOCAL" and "CONGEST" models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] "degree +1 " coloring

Selected prior work

- The standard greedy algorithm can $(\Delta+1)$-color a graph of max degree Δ, but has no semi-streaming implementation
- [AssadiChenKhanna19] Single-pass randomized streaming algorithm for $(\Delta+1)$ coloring, using semi-streaming space
- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with poly (Δ) colors
- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring

[^2]
Selected prior work

- The standard greedy algorithm can $(\Delta+1)$-color a graph of max degree Δ, but has no semi-streaming implementation
- [AssadiChenKhanna19] Single-pass randomized streaming algorithm for $(\Delta+1)$ coloring, using semi-streaming space
- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with poly (Δ) colors
- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta+1$ coloring?
> [GhaffariKuhn21] Deterministic $(\Delta+1)$ coloring algorithm in the "LOCAL" and "CONGEST" models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22]
"degree +1 " coloring

Selected prior work

- The standard greedy algorithm can $(\Delta+1)$-color a graph of max degree Δ, but has no semi-streaming implementation
- [AssadiChenKhanna19] Single-pass randomized streaming algorithm for $(\Delta+1)$ coloring, using semi-streaming space
- [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even coloring a graph with poly (Δ) colors
- [AssadiChenSun22] But with $O(\log \Delta)$ passes, can obtain an $O(\Delta)$ coloring

Question

Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta+1$ coloring?

- [GhaffariKuhn21] Deterministic $(\Delta+1)$ coloring algorithm in the "LOCAL" and "CONGEST" models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] "degree +1 " coloring

Our results

Theorem
There is a deterministic streaming algorithm for $(\Delta+1)$-coloring which uses $O(\log \Delta \log \log \Delta)$ passes and $O\left(n(\log n)^{2}\right)$ space

Theorem
Same bound hold for (degree+1) list coloring (DILC), where each vertex $x \in V$ has associated list L_{x} of permitted colors, where $\left|L_{x}\right| \geq \operatorname{deg} x+1$.

- Issue: storing color lists would take up to $\tilde{\Theta}(n \Delta)$ space. See paper.

Our results

Theorem

There is a deterministic streaming algorithm for $(\Delta+1)$-coloring which uses $O(\log \Delta \log \log \Delta)$ passes and $O\left(n(\log n)^{2}\right)$ space

Theorem

Same bounds hold for (degree+1) list coloring (D1LC), where each vertex $x \in V$ has associated list L_{x} of permitted colors, where $\left|L_{x}\right| \geq \operatorname{deg} x+1$.

- Issue: storing color lists would take up to $\Theta(n \Delta)$ space. See paper.

Our results

Theorem

There is a deterministic streaming algorithm for $(\Delta+1)$-coloring which uses $O(\log \Delta \log \log \Delta)$ passes and $O\left(n(\log n)^{2}\right)$ space

Theorem

Same bounds hold for (degree+1) list coloring (D1LC), where each vertex $x \in V$ has associated list L_{x} of permitted colors, where $\left|L_{x}\right| \geq \operatorname{deg} x+1$.

- Issue: storing color lists would take up to $\tilde{\Theta}(n \Delta)$ space. See paper.

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

High level description for deterministic $\Delta+1$ coloring

- Will repeatedly fix colors for more vertices
- Propose colors for all unfixed vertices, with few monochromatic edges \Longrightarrow can fix a constant fraction of proposed colors
- Example:

Deterministic color proposal

Progressively restrict which colors each vertex may have.

```
\(\rightarrow\) Assign each uncolored vertex set \([\Delta+1]\) of all colors
- Repeatedly choose a subset of the current color set for each vertex
    - Have a cost function \({ }^{\ddagger}\) bounding the final number of monochromatic edges
    - Pass 1: Compute "slack" values \({ }^{\S}\), where if \(x\) has color set \(S\), then
    slack \((x, S)=|S|-\mid\{\{y, x\} \in E: y\) 's color fixed and in \(S\} \mid\)
    - Pass 2-3: Use hash family to search for good color subset assignment
- After \(O(\log \Delta)\) refinements, have a single proposed color for every vertex.
```

Similar: [Kuhn20] and [GhaffariKuhn21]
Similar: [HalldórssonNolinKuhnTonoyan22]

Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta+1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
- Have a cost function ${ }^{\ddagger}$ bounding the final number of monochromatic edges
- Pass 1: Compute "slack" values ${ }^{\S}$, where if x has color set S, then
slack $(x, S)=|S|-\mid\{\{y, x\} \in E: y$'s color fixed and in $S\} \mid$
- Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \Lambda)$ refinements, have a single proposed color for every vertex.
Similar: [Kuhn20] and [GhaffariKuhn21]

Similar: [HalldórssonNolinKuhnTonoyan22]

Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta+1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
\rightarrow Have a cost function ${ }^{\ddagger}$ bounding the final number of monochromatic edges
- Pass 1: Compute "slack" values ${ }^{\S}$, where if x has color set S, then
$\operatorname{slack}(x, S)=|S|-\mid\left\{\{y, x\} \in E: y^{\prime}\right.$ s color fixed and in $\left.S\right\} \mid$
- Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \triangle)$ refinements, have a single proposed color for every vertex.
Similar: [Kuhn20] and [GhaffariKuhn21]

Similar: [HalldórssonNolinKuhnTonoyan22]

Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta+1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
- Have a cost function ${ }^{\ddagger}$ bounding the final number of monochromatic edges
- Pass 1: Compute "slack" values ${ }^{\S}$, where if x has color set S, then

$$
\text { slack }(x, S)=|S|-\mid\{\{y, x\} \in E: y \text { 's color fixed and in } S\} \mid
$$

- Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \Delta)$ refinements, have a single proposed color for every vertex.

[^3]
Deterministic color proposal

Progressively restrict which colors each vertex may have.

- Assign each uncolored vertex set $[\Delta+1]$ of all colors
- Repeatedly choose a subset of the current color set for each vertex
- Have a cost function ${ }^{\ddagger}$ bounding the final number of monochromatic edges
- Pass 1: Compute "slack" values ${ }^{\S}$, where if x has color set S, then

$$
\text { slack }(x, S)=|S|-\mid\{\{y, x\} \in E: y \text { 's color fixed and in } S\} \mid
$$

- Pass 2-3: Use hash family to search for good color subset assignment
- After $O(\log \Delta)$ refinements, have a single proposed color for every vertex.

[^4]
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_{1}, e_{2}, \ldots e_{i}$, and Algorithm produces outputs $\chi_{1}, \ldots, \chi_{i}$ solving task for stream up to this point.
- Adversary's chosen inputs may depend on prior outputs of the Algorithm
- Algorithm is "adversarially robust" if it has low error rate against any Adversary strategy
- Example: Input generated in real time - outputs may influence future inputs
- Sub-component of larger algorithm

Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_{1}, e_{2}, \ldots e_{i}$, and Algorithm produces outputs $\chi_{1}, \ldots, \chi_{i}$ solving task for stream up to this point.
- Adversary's chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is "adversarially robust" if it has low error rate against any Adversary strategy
- Example: Input generated in real time - outputs may influence future inputs
\rightarrow Sub-component of larger algorithm

[^5]
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_{1}, e_{2}, \ldots e_{i}$, and Algorithm produces outputs $\chi_{1}, \ldots, \chi_{i}$ solving task for stream up to this point.
- Adversary's chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is "adversarially robust" if it has low error rate against any Adversary strategy
\rightarrow Example: Input generated in real time - outputs may influence future inputs
- Sub-component of larger algorithm

[^6]
Adversarially robust streaming algorithms

- Two player game between Algorithm and Adversary
- Adversary constructs series of inputs $e_{1}, e_{2}, \ldots e_{i}$, and Algorithm produces outputs $\chi_{1}, \ldots, \chi_{i}$ solving task for stream up to this point.
- Adversary's chosen inputs may depend on prior outputs of the Algorithm.
- Algorithm is "adversarially robust" if it has low error rate against any Adversary strategy

- Example: Input generated in real time - outputs may influence future inputs
- Sub-component of larger algorithm

[^7]
Selected prior work

Task: Δ-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for $(\Delta+1)$-coloring in semi-streaming $(\tilde{O}(n))$ space.
\rightarrow [ChakrabartiGhoshStoeckl22] An adversarially robust $O\left(\Delta^{3}\right)$-coloring algorithm using semi-streaming space and access to $\tilde{O}(n \Delta)$ read-only random bits
- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o $\left(\Delta^{2}\right)$-coloring algorithms require $\tilde{\Omega}(n)$ space

Question
Is there an adversarially robust $O\left(\Delta^{2}\right)$-coloring algorithm in semi-streaming space which only needs $\tilde{O}(n)$ random bits?

Selected prior work

Task: Δ-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for $(\Delta+1)$-coloring in semi-streaming ($\tilde{O}(n))$ space.
- [ChakrabartiGhoshStoeckl22] An adversarially robust $O\left(\Delta^{3}\right)$-coloring algorithm using semi-streaming space and access to $\tilde{O}(n \Delta)$ read-only random bits
- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o $\left(\Delta^{2}\right)$-coloring algorithms require $\tilde{\Omega}(n)$ space

Question
Is there an adversarially robust $O\left(\Delta^{2}\right)$-coloring algorithm in semi-streaming space which only needs $\tilde{O}(n)$ random bits?

Selected prior work

Task: Δ-based graph coloring on stream of graph edges, with known vertex set

- [AssadiChenKhanna19] A randomized streaming algorithm for $(\Delta+1)$-coloring in semi-streaming ($\tilde{O}(n))$ space.
- [ChakrabartiGhoshStoeckl22] An adversarially robust $O\left(\Delta^{3}\right)$-coloring algorithm using semi-streaming space and access to $\tilde{O}(n \Delta)$ read-only random bits
- [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o $\left(\Delta^{2}\right)$-coloring algorithms require $\tilde{\Omega}(n)$ space

Question

Is there an adversarially robust $O\left(\Delta^{2}\right)$-coloring algorithm in semi-streaming space which only needs $\tilde{O}(n)$ random bits?

Our results

Theorem
There is an adversarially robust streaming algorithm for $O\left(\Delta^{2.5}\right)$-coloring using $\tilde{O}(n)$ space and $\tilde{O}(n \Delta)$ random bits.

- Space/color tradeoff: for any $\beta \in[0,1]$, get $\tilde{O}\left(\Delta^{5 / 2-3 \beta / 2}\right)$ colors with $\tilde{O}\left(n \Delta^{\beta}\right)$ space and $\tilde{O}(n \Delta)$ random bits.

Theorem
There is an adversarially robust streaming algorithm for $O\left(\Delta^{3}\right)$ coloring using $\tilde{O}(n)$ space (and no extra random bits).

Our results

Theorem

There is an adversarially robust streaming algorithm for $O\left(\Delta^{2.5}\right)$-coloring using $\tilde{O}(n)$ space and $\tilde{O}(n \Delta)$ random bits.

- Space/color tradeoff: for any $\beta \in[0,1]$, get $\tilde{O}\left(\Delta^{5 / 2-3 \beta / 2}\right)$ colors with $\tilde{O}\left(n \Delta^{\beta}\right)$ space and $\tilde{O}(n \Delta)$ random bits.

Theorem
There is an adversarially robust streaming algorithm for $O\left(\Delta^{3}\right)$ coloring using $\tilde{O}(n)$ space (and no extra random bits)

Our results

Theorem

There is an adversarially robust streaming algorithm for $O\left(\Delta^{2.5}\right)$-coloring using $\tilde{O}(n)$ space and $\tilde{O}(n \Delta)$ random bits.

- Space/color tradeoff: for any $\beta \in[0,1]$, get $\tilde{O}\left(\Delta^{5 / 2-3 \beta / 2}\right)$ colors with $\tilde{O}\left(n \Delta^{\beta}\right)$ space and $\tilde{O}(n \Delta)$ random bits.

Theorem
There is an adversarially robust streaming algorithm for $O\left(\Delta^{3}\right)$ coloring using $\tilde{O}(n)$ space (and no extra random bits).

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
\rightarrow Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $\chi \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph
Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

Example: Robust product coloring

- Use random partitions to reduce edges stored / increase colors used
- Adversarial robustness: periodically change partitions to avoid storing many edges
- Random partition $h: V \rightarrow[k]$
- Store edge $\{a, b\}$ into set D if $h(a)=h(b)$
- Compute coloring χ of D, and color v with $(h(v), \chi(v))$
- Before h is active, $|D|$ is small
- While h is active, $|D|$ can grow quickly
- After h is active, discard D

Input graph

Product coloring $X \times h$

High level description of $O\left(\Delta^{2.5}\right)$-coloring algorithm
Different forms of product coloring algorithm are efficient for different edge insertion patterns.

$><\sqrt{\Lambda}$ incident edges in a batch of n - Time-linked product coloring instances

High level description of $O\left(\Delta^{2.5}\right)$-coloring algorithm
Different forms of product coloring algorithm are efficient for different edge insertion patterns.
"Slow" vertices

- $\leq \sqrt{\Delta}$ incident edges in a batch of n
- Time-linked product coloring instances

$>$ Degree-linked product coloring instances

Each part: $O\left(\Delta^{1 / 2}\right)$ colors
$\Delta^{3 / 2}$ parts each

High level description of $O\left(\Delta^{2.5}\right)$-coloring algorithm
Different forms of product coloring algorithm are efficient for different edge insertion patterns.
"Slow" vertices
$>\leq \sqrt{\Delta}$ incident edges in a batch of n

- Time-linked product coloring instances "Fast" vertices
- $>\sqrt{\Delta}$ incident edges in a batch of n
- Degree-linked product coloring instances

Each part: $O\left(\Delta^{1 / 2}\right)$ colors
$\Delta^{3 / 2}$ parts each

Summary

- A multi-pass deterministic streaming algorithm which outputs a ($\Delta+1$)-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space.
- A single-pass adversarially robust streaming algorithm which outputs an $O\left(\Delta^{2.5}\right)$-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space (\& long random string).
- Open problems:
- Is there a 2-pass deterministic streaming algorithm in semi-streaming space using
$O(\Delta)$ colors?
\rightarrow Is there an adversarially robust streaming algorithm in semi-streaming space using $O\left(\Delta^{2}\right)$ colors, and $\tilde{O}(n)$ bits of randomness?

Summary

- A multi-pass deterministic streaming algorithm which outputs a ($\Delta+1$)-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space.
- A single-pass adversarially robust streaming algorithm which outputs an $O\left(\Delta^{2.5}\right)$-vertex-coloring of an input graph of max degree $\leq \Delta$, using semi-streaming space (\& long random string).
- Open problems:
- Is there a 2-pass deterministic streaming algorithm in semi-streaming space using $O(\Delta)$ colors?
- Is there an adversarially robust streaming algorithm in semi-streaming space using $O\left(\Delta^{2}\right)$ colors, and $\tilde{O}(n)$ bits of randomness?

[^0]: ${ }^{\dagger}$ Storing G takes $\tilde{O}(n \Delta)$ space.

[^1]: ${ }^{\dagger}$ Storing G takes $\tilde{O}(n \Delta)$ space.

[^2]: Question
 Is there a multi-pass deterministic semi-streaming space algorithm for $\Delta+1$ coloring?

 - [Ghaffarikuhn21] Deterministic $(\Lambda+1)$ coloring algorithm in the " $L O C A I$ " and "CONGEST" models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22] "degree +1 " coloring

[^3]: \ddagger Similar: [Kuhn20] and [GhaffariKuhn21]
 ${ }^{\text {§Similar: [HalldórssonNolinKuhnTonoyan22] }}$

[^4]: \ddagger Similar: [Kuhn20] and [GhaffariKuhn21]
 ${ }^{\text {§Similar: [HalldórssonNolinKuhnTonoyan22] }}$

[^5]: ${ }^{\text {I }}$ See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

[^6]: ${ }^{\text {T}}$ See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

[^7]: ${ }^{\text {IS See }}$ [Ben-EliezerJayaramWoodruffYogev20] for more explanation

