Coloring in Graph Streams
via Deterministic and Adversarially Robust Algorithms

Sepehr Assadi (Rutgers) Amit Chakrabarti (Dartmouth) Prantar Ghosh (DIMACS)
Manuel Stoeckl (Dartmouth)*

Symposium on Principles of Database Systems 2023

A-based coloring

» Graph G = (V, E) with n vertices and max degree A

» Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

A-based coloring

» Graph G = (V, E) with n vertices and max degree A

» Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

» Finding vertex colorings with a minimum number of colors is NP-hard

A-based coloring

» Graph G = (V, E) with n vertices and max degree A

» Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

» Finding vertex colorings with a minimum number of colors is NP-hard

» A-based colorings use number of colors depending on A.

A-based coloring

» Graph G = (V, E) with n vertices and max degree A

» Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

» Finding vertex colorings with a minimum number of colors is NP-hard

» A-based colorings use number of colors depending on A.

» Greedy algorithm: A + 1 colors
> Linial's algorithm|[Linial92]: O (A2?) colors
> Brook's theorem: A colors (if possible)

To what extent is randomization necessary for streaming algorithms that compute a
A-based coloring?

Outline

Deterministic multi-pass (A + 1) coloring

Adversarially robust coloring with O (A2'5) colors

Deterministic multi-pass (A + 1)-coloring on a graph stream

Input:

» A graph G = (V, E) on n vertices with maximum degree A, provided as a
sequence of edges

Storing G takes O (nA) space.

Deterministic multi-pass (A + 1)-coloring on a graph stream

Input:

» A graph G = (V, E) on n vertices with maximum degree A, provided as a
sequence of edges

Processing:
> Limited working space: only “semi-streaming’ (O (n), where O(-) hides polylog
factors in n and At

» For each pass, algorithm reads the input edge sequence in order

TStoring G takes O (nA) space.

Deterministic multi-pass (A + 1)-coloring on a graph stream

Input:

» A graph G = (V, E) on n vertices with maximum degree A, provided as a
sequence of edges

Processing:
> Limited working space: only “semi-streaming’ (O (n), where O(-) hides polylog
factors in n and At
» For each pass, algorithm reads the input edge sequence in order
Output:
» A coloring x : V — [A + 1], so that if {u,v} € E, then x (u) # x (v)

TStoring G takes O (nA) space.

Selected prior work

» The standard greedy algorithm can (A + 1)-color a graph of max degree A, but
has no semi-streaming implementation

Selected prior work

» The standard greedy algorithm can (A + 1)-color a graph of max degree A, but
has no semi-streaming implementation

» [AssadiChenKhannal9] Single-pass randomized streaming algorithm for (A + 1)
coloring, using semi-streaming space

» [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (A) colors

» [AssadiChenSun22] But with O (log A) passes, can obtain an O (A) coloring

Selected prior work

» The standard greedy algorithm can (A + 1)-color a graph of max degree A, but
has no semi-streaming implementation

» [AssadiChenKhannal9] Single-pass randomized streaming algorithm for (A + 1)
coloring, using semi-streaming space

» [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (A) colors

» [AssadiChenSun22] But with O (log A) passes, can obtain an O (A) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for A + 1 coloring?

Selected prior work

» The standard greedy algorithm can (A + 1)-color a graph of max degree A, but
has no semi-streaming implementation

» [AssadiChenKhannal9] Single-pass randomized streaming algorithm for (A + 1)
coloring, using semi-streaming space

» [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (A) colors

» [AssadiChenSun22] But with O (log A) passes, can obtain an O (A) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for A + 1 coloring?
» [GhaffariKuhn21] Deterministic (A + 1) coloring algorithm in the “LOCAL" and

“CONGEST" models of distributed algorithms. [HalldérssonNolinKuhnTonoyan22]
“degree + 1" coloring

Our results

Theorem
There is a deterministic streaming algorithm for (A + 1)-coloring which uses

O (log Aloglog A) passes and O (n (log n)2> space

Our results

Theorem
There is a deterministic streaming algorithm for (A + 1)-coloring which uses

O (log Aloglog A) passes and O (n (log n)2> space

Theorem
Same bounds hold for (degree+1) list coloring (DILC), where each vertex x € V' has
associated list L, of permitted colors, where |L,| > deg x + 1.

Our results

Theorem
There is a deterministic streaming algorithm for (A + 1)-coloring which uses

O (log Aloglog A) passes and O (n (log n)2> space

Theorem
Same bounds hold for (degree+1) list coloring (DILC), where each vertex x € V' has
associated list L, of permitted colors, where |L,| > deg x + 1.

> lIssue: storing color lists would take up to © (nA) space. See paper.

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

» Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

VAN

> Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

pavivy

> Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

> Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

> Example:

._

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

> Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

> Example:

High level description for deterministic A + 1 coloring

» Will repeatedly fix colors for more vertices

» Propose colors for all unfixed vertices, with few monochromatic edges = can fix
a constant fraction of proposed colors

> Example:

Deterministic color proposal

Progressively restrict which colors each vertex may have.

Similar: and
Similar:

Deterministic color proposal

Progressively restrict which colors each vertex may have.

» Assign each uncolored vertex set [A + 1] of all colors

Similar: and
Similar:

Deterministic color proposal

Progressively restrict which colors each vertex may have.

» Assign each uncolored vertex set [A + 1] of all colors

> Repeatedly choose a subset of the current color set for each vertex

Similar: and
Similar:

Deterministic color proposal

Progressively restrict which colors each vertex may have.

» Assign each uncolored vertex set [A + 1] of all colors

> Repeatedly choose a subset of the current color set for each vertex

> Have a cost function bounding the final number of monochromatic edges
» Pass 1: Compute “slack” values?, where if x has color set S, then

slack (x,S) = |S| — [{{y, x} € E : y's color fixed and in S}|

» Pass 2-3: Use hash family to search for good color subset assignment

*Similar: [Kuhn20] and [GhaffariKuhn21]
$Similar: [HalldérssonNolinKuhnTonoyan22]

Deterministic color proposal

Progressively restrict which colors each vertex may have.

» Assign each uncolored vertex set [A + 1] of all colors

> Repeatedly choose a subset of the current color set for each vertex

> Have a cost function bounding the final number of monochromatic edges
» Pass 1: Compute “slack” values?, where if x has color set S, then

slack (x,S) = |S| — [{{y, x} € E : y's color fixed and in S}|

» Pass 2-3: Use hash family to search for good color subset assignment

> After O (log A) refinements, have a single proposed color for every vertex.

*Similar: [Kuhn20] and [GhaffariKuhn21]
$Similar: [HalldérssonNolinKuhnTonoyan22]

Adversarially robust¥ streaming algorithms

» Two player game between Algorithm and Adversary

» Adversary constructs series of inputs eg, e, . .. €;, and
Algorithm produces outputs x1, ..., X; solving task for
stream up to this point.

9See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

/el

2

\/\

Adversarially robust¥ streaming algorithms

» Two player game between Algorithm and Adversary

» Adversary constructs series of inputs eg, e, . .. €;, and
Algorithm produces outputs x1, ..., x; solving task for
stream up to this point.

> Adversary's chosen inputs may depend on prior outputs of
the Algorithm.

9See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

/el

2

e\

3

:

Adversarially robust¥ streaming algorithms

» Two player game between Algorithm and Adversary

» Adversary constructs series of inputs eg, e, . .. €;, and
Algorithm produces outputs x1, ..., x; solving task for
stream up to this point.

> Adversary's chosen inputs may depend on prior outputs of
the Algorithm.

» Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy

9See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

/el

2

e\

3

:

Adversarially robust¥ streaming algorithms

» Two player game between Algorithm and Adversary

» Adversary constructs series of inputs eg, e, . .. €;, and
Algorithm produces outputs x1, ..., x; solving task for
stream up to this point.

> Adversary's chosen inputs may depend on prior outputs of
the Algorithm.

» Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy

» Example: Input generated in real time — outputs may
influence future inputs
» Sub-component of larger algorithm

9See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

/el

2

e\

3

:

Selected prior work

Task: A-based graph coloring on stream of graph edges, with known vertex set
» [AssadiChenKhannal9] A randomized streaming algorithm for (A + 1)-coloring in

semi-streaming (O (n)) space.

Selected prior work

Task: A-based graph coloring on stream of graph edges, with known vertex set
» [AssadiChenKhannal9] A randomized streaming algorithm for (A + 1)-coloring in

semi-streaming (O (n)) space.
> [ChakrabartiGhoshStoeckl22] An adversarially robust O (A3)-coloring algorithm
using semi-streaming space and access to O (nA) read-only random bits

P [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o (A?)-coloring
algorithms require Q2 (n) space

Selected prior work

Task: A-based graph coloring on stream of graph edges, with known vertex set
» [AssadiChenKhannal9] A randomized streaming algorithm for (A + 1)-coloring in

semi-streaming (O (n)) space.
> [ChakrabartiGhoshStoeckl22] An adversarially robust O (A3)-coloring algorithm
using semi-streaming space and access to O (nA) read-only random bits

P [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o (A?)-coloring
algorithms require Q2 (n) space

Question
Is there an adversarially robust O (Az)—coloring algorithm in semi-streaming space
which only needs O (n) random bits?

Our results

Theorem)
There is an adversarially robust streaming algorithm for O (A%5)-coloring using O (n)
space and O (nA) random bits.

Our results

Theorem)
There is an adversarially robust streaming algorithm for O (A%5)-coloring using O (n)
space and O (nA) random bits.
> Space/color tradeoff: for any 3 € [0, 1], get O (A3/2736/2) colors with 0 (nAP)
space and O (nA) random bits.

Our results

Theorem

There is an adversarially robust streaming algorithm for O (A%®)-coloring using O (n)
space and O (nA) random bits.

> Space/color tradeoff: for any 3 € [0, 1], get O (A3/2736/2) colors with 0 (nAP)
space and O (nA) random bits.

Theorem

There is an adversarially robust streaming algorithm for O (A%) coloring using O (n)
space (and no extra random bits).

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Input graph Product coloring xxh
© © O 1/ @ 2

© 6 0 0 @ @

ce o (@ o &

I I AN
I I/
20

inactive I active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if - 2
o e { e @ @ ®

© 6 0 0 @ @

ce o (@ o &

I I AN
I I/
20

inactive I active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if - 2
o e { e @ @ ®

» Compute coloring y of D, and colorv © © O @) @ @

with (h(v),x (v)) ® © O 3

I I AN
I I/
0

inactive I active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

> Random partition h: V — [K] Input graph Product coloring Xxh

» Store edge {a, b} into set D if
hoy @ © @ 1/ @

» Compute coloring y of D, and colorv © © O @ @ @

with (h(v), x (v))
» Before h is active, |D| is small © & o 3

While h is active, |D| can grow quickly | |

v

» After h is active, discard D inactive | active time interval

0 10

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V' — [K] Input graph Product coloring Xxh
Store edge {a, b} into set D if

h(a) = h) ©e°

Compute coloring x of D, and color v © O—O o

with (h(v),x (v))

Before h is active, |D| is small © & o @ ® @3
While h is active, |D| can grow quickly | | L\
After h is active, discard D 9 inactive 1'@ active time interval 2' ®/

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

> Random partition h: V — [K] Input graph Product coloring Xxh

» Store edge {a, b} into set D if
hoy @ © @ 1/ @

» Compute coloring x of D, and color v O @ @ @)
with (h(v),x (v)) ..
» Before h is active, |D| is small © © 3

While h is active, |D| can grow quickly | |

v

» After h is active, discard D inactive | active time interval

0 10

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [K]

Store edge {a, b} into set D if

h(a) = h(b)

Compute coloring x of D, and color v
with (h(v),x (v))

Before h is active, |D| is small

While h is active, |D| can grow quickly
After h is active, discard D

Input graph

Product coloring Xxh

© O
@ @ ®)3
RN
inactive l active time interval I/
10 20

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if
h(a) = h(b) © @

» Compute coloring x of D, and color v O
with (h(v),x(v))

» Before h is active, |D| is small © ©
» While h is active, |D| can grow quickly | I I
» After his active, discard D inactive active time interval

) 10 2

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if @
h(a) = h(b)

» Compute coloring x of D, and color v O
with (h(v),x(v))

» Before h is active, |D| is small © ©
» While h is active, |D| can grow quickly | I I
» After his active, discard D inactive active time interval

) 10 2

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [K] Input graph Product coloring Xxh
Store edge {a, b} into set D if @
h(a) = h(b)

Compute coloring x of D, and color v ©

with (h(v),x(v))

Before h is active, |D| is small © ©
While h is active, |D| can grow quickly | |

After h is active, discard D inactive

0 10

active time interval

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [K]

Store edge {a, b} into set D if

h(a) = h(b)

Compute coloring x of D, and color v
with (h(v), x (v))

Before h is active, |D| is small

While h is active, |D| can grow quickly
After h is active, discard D

;
’ E 2

(@) o

I I

Input graph

Product coloring xxh

o

inactive

active time interval

10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

> Random partition h: V — [K] Input graph Product coloring Xxh

» Before h is active, |D| is small

» Store edge {a, b} into set D if -
h(a) = h(b)
» Compute coloring x of D, and color v
with (h(v),x(v))
o o
| |

v

While h is active, |D| can grow quickly

» After h is active, discard D ! inactive | active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if
h(a) = h(b)
» Compute coloring x of D, and color v
with (h(v),x(v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly
» After h is active, discard D

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if
h(a) = h(b)
» Compute coloring x of D, and color v
with (h(v),x(v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly
» After h is active, discard D

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [£] Input graph Product coloring xxh

Store edge {a, b} into set D if ;
h(a) = h(b)
Compute coloring x of D, and color v
with (h(v),x(v))
| |

Before h is active, |D| is small

While h is active, |D| can grow quickly

After h is active, discard D ! inactive | active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

> Random partition h: V — [K] Input graph Product coloring Xxh

» Store edge {a, b} into set D if
h(a) = h(b)

» Compute coloring x of D, and color v
with (h(v),x(v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly | |
» After his active, discard D ! inactive

0 10

active time interval

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [£] Input graph Product coloring xxh

Store edge {a, b} into set D if ;
h(a) = h(b)
Compute coloring x of D, and color v u)
with (h(v),x(v))
| |

Before h is active, |D| is small

While h is active, |D| can grow quickly

After h is active, discard D ! inactive | active time interval

0 10

Example: Robust product coloring

v

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

Random partition h: V — [£] Input graph Product coloring xxh

Store edge {a, b} into set D if ;
h(a) = h(b)
Compute coloring x of D, and color v u)
with (h(v),x(v))
| |

Before h is active, |D| is small

While h is active, |D| can grow quickly

After h is active, discard D ! inactive | active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if

h(a) = h(b)
» Compute coloring x of D, and color v)

with (h(v),x (v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly | |

» After h is active, discard D inactive active time interval

0 10

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if

h(a) = h(b)
» Compute coloring x of D, and color v)

with (h(v),x (v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly | |
» After his active, discard D ! inactive

0 10

active time interval

Example: Robust product coloring

» Use random partitions to reduce edges stored / increase colors used

> Adversarial robustness: periodically change partitions to avoid storing many edges

» Random partition h: V — [K] Input graph Product coloring Xxh
» Store edge {a, b} into set D if

h(a) = h(b)
» Compute coloring x of D, and color v)

with (h(v),x (v))

» Before h is active, |D| is small

v

While h is active, |D| can grow quickly | |
> After h is active, discard D ! inactive l

0 10

active time interval

High level description of O (A2'5)—co|oring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

Each part: O(A'2) colors
A3/2 parts each

(X O ¢
@ DT) \ e
c >CHo@

Oo%@gb %ﬂé
)

vix degree

i
Q00

-
&

O Yoy

A2 parts
A instances

@)

O

D
Co
O

jexetl

(©)

|

time

High level description of O (A2'5)—co|oring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

“Slow”" vertices

Each part: O(A"2) colors
» < /A incident edges in a batch of n P (A7)

A3/2 parts each

» Time-linked product coloring instances

> CHT >¢
% - I\
c > Ha@

vix degree

S0 O 0o 999
SR
é% OO% OO’%%@O !

A2 parts

|

ime A instances

High level description of O (A2'5)—co|oring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

“Slow”" vertices

Each part: O(A"2) colors
» < /A incident edges in a batch of n P (A7)

A3/2 parts each

» Time-linked product coloring instances >< Z U

“Fast” vertices M X ><
> > /A incident edges in a batch of n = C) C A2

» Degree-linked product coloring

i

vix degree

instances e O O 00
008 Oo&)oo Ql)
SR
oo O oeoc0 Se3s
A2 parts

|

ime A instances

Summary

» A multi-pass deterministic streaming algorithm which outputs a
(A + 1)-vertex-coloring of an input graph of max degree < A, using
semi-streaming space.

» A single-pass adversarially robust streaming algorithm which outputs an
0 (A2'5)-vertex—co|oring of an input graph of max degree < A, using
semi-streaming space (& long random string).

Summary

» A multi-pass deterministic streaming algorithm which outputs a
(A + 1)-vertex-coloring of an input graph of max degree < A, using
semi-streaming space.

» A single-pass adversarially robust streaming algorithm which outputs an
0 (A2'5)-vertex—co|oring of an input graph of max degree < A, using
semi-streaming space (& long random string).

» Open problems:

» |s there a 2-pass deterministic streaming algorithm in semi-streaming space using
O (A) colors?

» Is there an adversarially robust streaming algorithm in semi-streaming space using
O (A?) colors, and O (n) bits of randomness?

	Deterministic multi-pass (+1) coloring
	Adversarially robust coloring with O(2.5) colors

