
1/15

Coloring in Graph Streams
via Deterministic and Adversarially Robust Algorithms

Sepehr Assadi (Rutgers) Amit Chakrabarti (Dartmouth) Prantar Ghosh (DIMACS)
Manuel Stoeckl (Dartmouth)∗

Symposium on Principles of Database Systems 2023

Slides CC-BY-SA 4.0, available at https://mstoeckl.com/. Full paper at https://arxiv.org/abs/2212.10641

∗This work was supported in part by NSF under awards CCF-1907738 and CCF-2006589. S.A’s research supported in part by a

NSF CAREER Grant CCF-2047061, a Google Research gift, and a Fulcrum award from the Rutgers Research Council.

2/15

∆-based coloring
▶ Graph G = (V ,E) with n vertices and max degree ∆

▶ Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

1

1

3

3

2

2

▶ Finding vertex colorings with a minimum number of colors is NP-hard

▶ ∆-based colorings use number of colors depending on ∆.
▶ Greedy algorithm: ∆+ 1 colors
▶ Linial’s algorithm[Linial92]: O

(
∆2

)
colors

▶ Brook’s theorem: ∆ colors (if possible)

2/15

∆-based coloring
▶ Graph G = (V ,E) with n vertices and max degree ∆

▶ Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

1

1

3

3

2

2

▶ Finding vertex colorings with a minimum number of colors is NP-hard

▶ ∆-based colorings use number of colors depending on ∆.
▶ Greedy algorithm: ∆+ 1 colors
▶ Linial’s algorithm[Linial92]: O

(
∆2

)
colors

▶ Brook’s theorem: ∆ colors (if possible)

2/15

∆-based coloring
▶ Graph G = (V ,E) with n vertices and max degree ∆

▶ Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

1

1

3

3

2

2

▶ Finding vertex colorings with a minimum number of colors is NP-hard

▶ ∆-based colorings use number of colors depending on ∆.
▶ Greedy algorithm: ∆+ 1 colors
▶ Linial’s algorithm[Linial92]: O

(
∆2

)
colors

▶ Brook’s theorem: ∆ colors (if possible)

2/15

∆-based coloring
▶ Graph G = (V ,E) with n vertices and max degree ∆

▶ Vertex coloring: assign a color to each vertex G so that no edge connects two
vertices of the same color

1

1

3

3

2

2

▶ Finding vertex colorings with a minimum number of colors is NP-hard

▶ ∆-based colorings use number of colors depending on ∆.
▶ Greedy algorithm: ∆+ 1 colors
▶ Linial’s algorithm[Linial92]: O

(
∆2

)
colors

▶ Brook’s theorem: ∆ colors (if possible)

To what extent is randomization necessary for streaming algorithms that compute a
∆-based coloring?

3/15

4/15

Outline

Deterministic multi-pass (∆ + 1) coloring

Adversarially robust coloring with O
(
∆2.5) colors

5/15

Deterministic multi-pass (∆ + 1)-coloring on a graph stream

Input:
▶ A graph G = (V ,E) on n vertices with maximum degree ∆, provided as a

sequence of edges
Processing:
▶ Limited working space: only “semi-streaming” (Õ (n), where Õ(·) hides polylog

factors in n and ∆.)†

▶ For each pass, algorithm reads the input edge sequence in order
Output:
▶ A coloring χ : V → [∆ + 1], so that if {u, v} ∈ E , then χ (u) ̸= χ (v)

†Storing G takes Õ (n∆) space.

5/15

Deterministic multi-pass (∆ + 1)-coloring on a graph stream

Input:
▶ A graph G = (V ,E) on n vertices with maximum degree ∆, provided as a

sequence of edges
Processing:
▶ Limited working space: only “semi-streaming” (Õ (n), where Õ(·) hides polylog

factors in n and ∆.)†

▶ For each pass, algorithm reads the input edge sequence in order
Output:
▶ A coloring χ : V → [∆ + 1], so that if {u, v} ∈ E , then χ (u) ̸= χ (v)

†Storing G takes Õ (n∆) space.

5/15

Deterministic multi-pass (∆ + 1)-coloring on a graph stream

Input:
▶ A graph G = (V ,E) on n vertices with maximum degree ∆, provided as a

sequence of edges
Processing:
▶ Limited working space: only “semi-streaming” (Õ (n), where Õ(·) hides polylog

factors in n and ∆.)†

▶ For each pass, algorithm reads the input edge sequence in order
Output:
▶ A coloring χ : V → [∆ + 1], so that if {u, v} ∈ E , then χ (u) ̸= χ (v)

†Storing G takes Õ (n∆) space.

6/15

Selected prior work

▶ The standard greedy algorithm can (∆ + 1)-color a graph of max degree ∆, but
has no semi-streaming implementation

▶ [AssadiChenKhanna19] Single-pass randomized streaming algorithm for (∆ + 1)
coloring, using semi-streaming space

▶ [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (∆) colors

▶ [AssadiChenSun22] But with O (log∆) passes, can obtain an O (∆) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for ∆+ 1 coloring?

▶ [GhaffariKuhn21] Deterministic (∆ + 1) coloring algorithm in the “LOCAL” and
“CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22]
“degree + 1” coloring

6/15

Selected prior work

▶ The standard greedy algorithm can (∆ + 1)-color a graph of max degree ∆, but
has no semi-streaming implementation

▶ [AssadiChenKhanna19] Single-pass randomized streaming algorithm for (∆ + 1)
coloring, using semi-streaming space

▶ [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (∆) colors

▶ [AssadiChenSun22] But with O (log∆) passes, can obtain an O (∆) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for ∆+ 1 coloring?

▶ [GhaffariKuhn21] Deterministic (∆ + 1) coloring algorithm in the “LOCAL” and
“CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22]
“degree + 1” coloring

6/15

Selected prior work

▶ The standard greedy algorithm can (∆ + 1)-color a graph of max degree ∆, but
has no semi-streaming implementation

▶ [AssadiChenKhanna19] Single-pass randomized streaming algorithm for (∆ + 1)
coloring, using semi-streaming space

▶ [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (∆) colors

▶ [AssadiChenSun22] But with O (log∆) passes, can obtain an O (∆) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for ∆+ 1 coloring?

▶ [GhaffariKuhn21] Deterministic (∆ + 1) coloring algorithm in the “LOCAL” and
“CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22]
“degree + 1” coloring

6/15

Selected prior work

▶ The standard greedy algorithm can (∆ + 1)-color a graph of max degree ∆, but
has no semi-streaming implementation

▶ [AssadiChenKhanna19] Single-pass randomized streaming algorithm for (∆ + 1)
coloring, using semi-streaming space

▶ [AssadiChenSun22] No 1-pass deterministic semi-streaming algorithms for even
coloring a graph with poly (∆) colors

▶ [AssadiChenSun22] But with O (log∆) passes, can obtain an O (∆) coloring

Question
Is there a multi-pass deterministic semi-streaming space algorithm for ∆+ 1 coloring?

▶ [GhaffariKuhn21] Deterministic (∆ + 1) coloring algorithm in the “LOCAL” and
“CONGEST” models of distributed algorithms. [HalldórssonNolinKuhnTonoyan22]
“degree + 1” coloring

7/15

Our results

Theorem
There is a deterministic streaming algorithm for (∆ + 1)-coloring which uses
O (log∆ log log∆) passes and O

(
n (log n)2

)
space

Theorem
Same bounds hold for (degree+1) list coloring (D1LC), where each vertex x ∈ V has
associated list Lx of permitted colors, where |Lx | ≥ deg x + 1.

▶ Issue: storing color lists would take up to Θ̃ (n∆) space. See paper.

7/15

Our results

Theorem
There is a deterministic streaming algorithm for (∆ + 1)-coloring which uses
O (log∆ log log∆) passes and O

(
n (log n)2

)
space

Theorem
Same bounds hold for (degree+1) list coloring (D1LC), where each vertex x ∈ V has
associated list Lx of permitted colors, where |Lx | ≥ deg x + 1.

▶ Issue: storing color lists would take up to Θ̃ (n∆) space. See paper.

7/15

Our results

Theorem
There is a deterministic streaming algorithm for (∆ + 1)-coloring which uses
O (log∆ log log∆) passes and O

(
n (log n)2

)
space

Theorem
Same bounds hold for (degree+1) list coloring (D1LC), where each vertex x ∈ V has
associated list Lx of permitted colors, where |Lx | ≥ deg x + 1.

▶ Issue: storing color lists would take up to Θ̃ (n∆) space. See paper.

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

8/15

High level description for deterministic ∆+ 1 coloring

▶ Will repeatedly fix colors for more vertices
▶ Propose colors for all unfixed vertices, with few monochromatic edges =⇒ can fix

a constant fraction of proposed colors

▶ Example:

9/15

Deterministic color proposal

Progressively restrict which colors each vertex may have.
▶ Assign each uncolored vertex set [∆ + 1] of all colors

▶ Repeatedly choose a subset of the current color set for each vertex
▶ Have a cost function‡ bounding the final number of monochromatic edges
▶ Pass 1: Compute “slack” values§, where if x has color set S , then

slack (x ,S) = |S | − |{{y , x} ∈ E : y ’s color fixed and in S}|

▶ Pass 2-3: Use hash family to search for good color subset assignment

▶ After O (log∆) refinements, have a single proposed color for every vertex.

‡Similar: [Kuhn20] and [GhaffariKuhn21]
§Similar: [HalldórssonNolinKuhnTonoyan22]

9/15

Deterministic color proposal

Progressively restrict which colors each vertex may have.
▶ Assign each uncolored vertex set [∆ + 1] of all colors

▶ Repeatedly choose a subset of the current color set for each vertex
▶ Have a cost function‡ bounding the final number of monochromatic edges
▶ Pass 1: Compute “slack” values§, where if x has color set S , then

slack (x ,S) = |S | − |{{y , x} ∈ E : y ’s color fixed and in S}|

▶ Pass 2-3: Use hash family to search for good color subset assignment

▶ After O (log∆) refinements, have a single proposed color for every vertex.

‡Similar: [Kuhn20] and [GhaffariKuhn21]
§Similar: [HalldórssonNolinKuhnTonoyan22]

9/15

Deterministic color proposal

Progressively restrict which colors each vertex may have.
▶ Assign each uncolored vertex set [∆ + 1] of all colors

▶ Repeatedly choose a subset of the current color set for each vertex
▶ Have a cost function‡ bounding the final number of monochromatic edges
▶ Pass 1: Compute “slack” values§, where if x has color set S , then

slack (x ,S) = |S | − |{{y , x} ∈ E : y ’s color fixed and in S}|

▶ Pass 2-3: Use hash family to search for good color subset assignment

▶ After O (log∆) refinements, have a single proposed color for every vertex.

‡Similar: [Kuhn20] and [GhaffariKuhn21]
§Similar: [HalldórssonNolinKuhnTonoyan22]

9/15

Deterministic color proposal

Progressively restrict which colors each vertex may have.
▶ Assign each uncolored vertex set [∆ + 1] of all colors

▶ Repeatedly choose a subset of the current color set for each vertex
▶ Have a cost function‡ bounding the final number of monochromatic edges
▶ Pass 1: Compute “slack” values§, where if x has color set S , then

slack (x ,S) = |S | − |{{y , x} ∈ E : y ’s color fixed and in S}|

▶ Pass 2-3: Use hash family to search for good color subset assignment

▶ After O (log∆) refinements, have a single proposed color for every vertex.

‡Similar: [Kuhn20] and [GhaffariKuhn21]
§Similar: [HalldórssonNolinKuhnTonoyan22]

9/15

Deterministic color proposal

Progressively restrict which colors each vertex may have.
▶ Assign each uncolored vertex set [∆ + 1] of all colors

▶ Repeatedly choose a subset of the current color set for each vertex
▶ Have a cost function‡ bounding the final number of monochromatic edges
▶ Pass 1: Compute “slack” values§, where if x has color set S , then

slack (x ,S) = |S | − |{{y , x} ∈ E : y ’s color fixed and in S}|

▶ Pass 2-3: Use hash family to search for good color subset assignment

▶ After O (log∆) refinements, have a single proposed color for every vertex.

‡Similar: [Kuhn20] and [GhaffariKuhn21]
§Similar: [HalldórssonNolinKuhnTonoyan22]

10/15

Adversarially robust¶ streaming algorithms

▶ Two player game between Algorithm and Adversary
▶ Adversary constructs series of inputs e1, e2, . . . ei , and

Algorithm produces outputs χ1, . . . , χi solving task for
stream up to this point.

▶ Adversary’s chosen inputs may depend on prior outputs of
the Algorithm.

▶ Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy
▶ Example: Input generated in real time – outputs may

influence future inputs
▶ Sub-component of larger algorithm

A
LG

O
R
ITH

M

A
D
V
ER

S
A
R
Y

e1
χ1

e2

e3

χ2

¶See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

10/15

Adversarially robust¶ streaming algorithms

▶ Two player game between Algorithm and Adversary
▶ Adversary constructs series of inputs e1, e2, . . . ei , and

Algorithm produces outputs χ1, . . . , χi solving task for
stream up to this point.

▶ Adversary’s chosen inputs may depend on prior outputs of
the Algorithm.

▶ Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy
▶ Example: Input generated in real time – outputs may

influence future inputs
▶ Sub-component of larger algorithm

A
LG

O
R
ITH

M

A
D
V
ER

S
A
R
Y

e1
χ1

e2

e3

χ2

¶See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

10/15

Adversarially robust¶ streaming algorithms

▶ Two player game between Algorithm and Adversary
▶ Adversary constructs series of inputs e1, e2, . . . ei , and

Algorithm produces outputs χ1, . . . , χi solving task for
stream up to this point.

▶ Adversary’s chosen inputs may depend on prior outputs of
the Algorithm.

▶ Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy
▶ Example: Input generated in real time – outputs may

influence future inputs
▶ Sub-component of larger algorithm

A
LG

O
R
ITH

M

A
D
V
ER

S
A
R
Y

e1
χ1

e2

e3

χ2

¶See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

10/15

Adversarially robust¶ streaming algorithms

▶ Two player game between Algorithm and Adversary
▶ Adversary constructs series of inputs e1, e2, . . . ei , and

Algorithm produces outputs χ1, . . . , χi solving task for
stream up to this point.

▶ Adversary’s chosen inputs may depend on prior outputs of
the Algorithm.

▶ Algorithm is “adversarially robust” if it has low error rate
against any Adversary strategy
▶ Example: Input generated in real time – outputs may

influence future inputs
▶ Sub-component of larger algorithm

A
LG

O
R
ITH

M

A
D
V
ER

S
A
R
Y

e1
χ1

e2

e3

χ2

¶See [Ben-EliezerJayaramWoodruffYogev20] for more explanation

11/15

Selected prior work

Task: ∆-based graph coloring on stream of graph edges, with known vertex set
▶ [AssadiChenKhanna19] A randomized streaming algorithm for (∆ + 1)-coloring in

semi-streaming (Õ (n)) space.

▶ [ChakrabartiGhoshStoeckl22] An adversarially robust O
(
∆3)-coloring algorithm

using semi-streaming space and access to Õ (n∆) read-only random bits
▶ [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o

(
∆2)-coloring

algorithms require Ω̃ (n) space

Question
Is there an adversarially robust O

(
∆2)-coloring algorithm in semi-streaming space

which only needs Õ (n) random bits?

11/15

Selected prior work

Task: ∆-based graph coloring on stream of graph edges, with known vertex set
▶ [AssadiChenKhanna19] A randomized streaming algorithm for (∆ + 1)-coloring in

semi-streaming (Õ (n)) space.

▶ [ChakrabartiGhoshStoeckl22] An adversarially robust O
(
∆3)-coloring algorithm

using semi-streaming space and access to Õ (n∆) read-only random bits
▶ [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o

(
∆2)-coloring

algorithms require Ω̃ (n) space

Question
Is there an adversarially robust O

(
∆2)-coloring algorithm in semi-streaming space

which only needs Õ (n) random bits?

11/15

Selected prior work

Task: ∆-based graph coloring on stream of graph edges, with known vertex set
▶ [AssadiChenKhanna19] A randomized streaming algorithm for (∆ + 1)-coloring in

semi-streaming (Õ (n)) space.

▶ [ChakrabartiGhoshStoeckl22] An adversarially robust O
(
∆3)-coloring algorithm

using semi-streaming space and access to Õ (n∆) read-only random bits
▶ [ChakrabartiGhoshStoeckl22] Adversarially robust algorithms for o

(
∆2)-coloring

algorithms require Ω̃ (n) space

Question
Is there an adversarially robust O

(
∆2)-coloring algorithm in semi-streaming space

which only needs Õ (n) random bits?

12/15

Our results

Theorem
There is an adversarially robust streaming algorithm for O

(
∆2.5)-coloring using Õ (n)

space and Õ (n∆) random bits.

▶ Space/color tradeoff: for any β ∈ [0, 1], get Õ
(
∆5/2−3β/2) colors with Õ

(
n∆β

)
space and Õ (n∆) random bits.

Theorem
There is an adversarially robust streaming algorithm for O

(
∆3) coloring using Õ (n)

space (and no extra random bits).

12/15

Our results

Theorem
There is an adversarially robust streaming algorithm for O

(
∆2.5)-coloring using Õ (n)

space and Õ (n∆) random bits.

▶ Space/color tradeoff: for any β ∈ [0, 1], get Õ
(
∆5/2−3β/2) colors with Õ

(
n∆β

)
space and Õ (n∆) random bits.

Theorem
There is an adversarially robust streaming algorithm for O

(
∆3) coloring using Õ (n)

space (and no extra random bits).

12/15

Our results

Theorem
There is an adversarially robust streaming algorithm for O

(
∆2.5)-coloring using Õ (n)

space and Õ (n∆) random bits.

▶ Space/color tradeoff: for any β ∈ [0, 1], get Õ
(
∆5/2−3β/2) colors with Õ

(
n∆β

)
space and Õ (n∆) random bits.

Theorem
There is an adversarially robust streaming algorithm for O

(
∆3) coloring using Õ (n)

space (and no extra random bits).

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

1

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

11

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

21

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

21

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 1

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 2

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

11 2

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

1

32

1

11

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

1

32

1

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

1

32

1

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

1

32

1

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

2

21

3

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

2

31

2

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

13/15

Example: Robust product coloring

▶ Use random partitions to reduce edges stored / increase colors used
▶ Adversarial robustness: periodically change partitions to avoid storing many edges

▶ Random partition h : V → [k]

▶ Store edge {a, b} into set D if
h (a) = h (b)

▶ Compute coloring χ of D, and color v
with (h (v) , χ (v))

▶ Before h is active, |D| is small
▶ While h is active, |D| can grow quickly
▶ After h is active, discard D

2

12 2

2

31

4

13

Input graph Product coloring χ⨉h

1 2

3

0 10 20
active time intervalinactive

14/15

High level description of O
(
∆2.5

)
-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

“Slow” vertices
▶ ≤

√
∆ incident edges in a batch of n

▶ Time-linked product coloring instances
“Fast” vertices
▶ >

√
∆ incident edges in a batch of n

▶ Degree-linked product coloring
instances

Δ instancestime

vt
x

de
gr

ee

Δ1/2

Δ3/2 parts each

Δ2 parts

Each part: O(Δ1/2) colors

14/15

High level description of O
(
∆2.5

)
-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

“Slow” vertices
▶ ≤

√
∆ incident edges in a batch of n

▶ Time-linked product coloring instances
“Fast” vertices
▶ >

√
∆ incident edges in a batch of n

▶ Degree-linked product coloring
instances

Δ instancestime

vt
x

de
gr

ee

Δ1/2

Δ3/2 parts each

Δ2 parts

Each part: O(Δ1/2) colors

14/15

High level description of O
(
∆2.5

)
-coloring algorithm

Different forms of product coloring algorithm are efficient for different edge insertion
patterns.

“Slow” vertices
▶ ≤

√
∆ incident edges in a batch of n

▶ Time-linked product coloring instances
“Fast” vertices
▶ >

√
∆ incident edges in a batch of n

▶ Degree-linked product coloring
instances

Δ instancestime

vt
x

de
gr

ee

Δ1/2

Δ3/2 parts each

Δ2 parts

Each part: O(Δ1/2) colors

15/15

Summary

▶ A multi-pass deterministic streaming algorithm which outputs a
(∆ + 1)-vertex-coloring of an input graph of max degree ≤ ∆, using
semi-streaming space.

▶ A single-pass adversarially robust streaming algorithm which outputs an
O
(
∆2.5)-vertex-coloring of an input graph of max degree ≤ ∆, using

semi-streaming space (& long random string).

▶ Open problems:
▶ Is there a 2-pass deterministic streaming algorithm in semi-streaming space using

O (∆) colors?
▶ Is there an adversarially robust streaming algorithm in semi-streaming space using

O
(
∆2

)
colors, and Õ (n) bits of randomness?

15/15

Summary

▶ A multi-pass deterministic streaming algorithm which outputs a
(∆ + 1)-vertex-coloring of an input graph of max degree ≤ ∆, using
semi-streaming space.

▶ A single-pass adversarially robust streaming algorithm which outputs an
O
(
∆2.5)-vertex-coloring of an input graph of max degree ≤ ∆, using

semi-streaming space (& long random string).

▶ Open problems:
▶ Is there a 2-pass deterministic streaming algorithm in semi-streaming space using

O (∆) colors?
▶ Is there an adversarially robust streaming algorithm in semi-streaming space using

O
(
∆2

)
colors, and Õ (n) bits of randomness?

	Deterministic multi-pass (+1) coloring
	Adversarially robust coloring with O(2.5) colors

