
ar
X

iv
:2

21
2.

10
64

1v
1

 [
cs

.D
S]

 2
0

D
ec

 2
02

2

Coloring in Graph Streams via Deterministic and

Adversarially Robust Algorithms*

Sepehr Assadi† Amit Chakrabarti‡ Prantar Ghosh§ Manuel Stoeckl‡

Abstract

In recent years, there has been a growing interest in solving various graph coloring problems in the

streaming model. The initial algorithms in this line of work are all crucially randomized, raising natu-

ral questions about how important a role randomization plays in streaming graph coloring. A couple

of very recent works have made progress on this question: they prove that deterministic or even

adversarially robust coloring algorithms (that work on streams whose updates may depend on the

algorithm’s past outputs) are considerably weaker than standard randomized ones. However, there

is still a significant gap between the upper and lower bounds for the number of colors needed (as

a function of the maximum degree ∆) for robust coloring and multipass deterministic coloring. We

contribute to this line of work by proving the following results.

• In the deterministic semi-streaming (i.e., O(n ·polylog n) space) regime, we present an algo-

rithm that achieves a combinatorially optimal (∆+1)-coloring using O(log∆ loglog∆) passes.

This improves upon the prior O(∆)-coloring algorithm of Assadi, Chen, and Sun (STOC 2022) at

the cost of only an O(loglog∆) factor in the number of passes.

• In the adversarially robust semi-streaming regime, we design an O(∆5/2)-coloring algorithm

that improves upon the previously best O(∆3)-coloring algorithm of Chakrabarti, Ghosh, and

Stoeckl (ITCS 2022). Further, we obtain a smooth colors/space tradeoff that improves upon

another algorithm of the said work: whereas their algorithm uses O(∆2) colors and O(n∆1/2)

space, ours, in particular, achieves (i) O(∆2) colors in O(n∆1/3) space, and (ii) O(∆7/4) colors in

O(n∆1/2) space.

*This work was supported in part by NSF under awards CCF-1907738 and CCF-2006589.
†Department of Computer Science, Rutgers University. Research supported in part by a NSF CAREER Grant CCF-2047061, a

Google Research gift, and a Fulcrum award from Rutgers Research Council.
‡Department of Computer Science, Dartmouth College.
§DIMACS, Rutgers Univeristy. Work done in part while the author was at Dartmouth College.

http://arxiv.org/abs/2212.10641v1

1 Introduction

In the graph coloring problem, we are given an undirected graph and the goal is to assign colors to the

nodes of the graph such that adjacent nodes receive different colors. Graph coloring is a fundamental

problem in graph theory with numerous applications in computer science, including in databases, data

mining, register allocation, and scheduling [Cha82, LS86, PCH+16]; see, e.g., the application to parallel

query optimization by Hasan and Motwani [HM95]. The emergence of massive graphs in many of these

application domains has necessitated the study of graph coloring algorithms that are capable of handling

such graphs efficiently on modern architecture. Of particular interest is the family of graph streaming

algorithms: each such algorithm computes its solution using only a small number of sequential passes

over the edges of the input graph, while using a sublinear amount of memory.

Several graph coloring problems have been studied in the streaming setting, typically with the goal

of achieving a palette size (total number of colors used) proportional to the graph’s chromatic num-

ber [CDK19, ACKP19], maximum vertex-degree [ACK19, BG18, AA20, ACS22, AKM22], arboricity [BG18],

or degeneracy [BCG20]. Also studied is the closely-related problem of (degree+1)-list-coloring [HKNT22]

(see also [AA20]). Furthermore, graph coloring has been considered under different streaming paradigms

such as random stream order and the vertex-arrival model [BBMU21]. Most of these works consider the

semi-streaming regime, where we are restricted to O(n·polylog n) space for processing an n-vertex graph.

Since even just storing the output coloring can require Ω(n logn) space, this is close to optimal for the

problem. We study semi-streaming graph coloring, focusing on the most popular color parameter in this

line of work, namely the maximum degree ∆ of the graph: we call this “∆-based coloring.”

A trivial greedy algorithm achieves a (∆+1)-coloring in the offline setting. However, obtaining this

color bound in the streaming model is fairly challenging. A breakthrough work by Assadi, Chen, and

Khanna [ACK19] did achieve such a coloring in semi-streaming space. An aspect of this algorithm, shared

with almost all subsequent streaming coloring algorithms, is that it is inherently randomized. This raises

the natural question: to what extent is randomization necessary for ∆-based coloring? Indeed, a deran-

domized version can be advantageous in multiple scenarios, e.g., having low or zero error even when the

algorithm is rerun a huge (maybe exponential) number of times, or for robustness against input streams

generated based on the algorithm’s past outputs or internal states.

Two recent works have addressed this question. On the one hand, Assadi, Chen, and Sun [ACS22]

ruled out non-trivial single-pass deterministic algorithms for ∆-based coloring: any such algorithm re-

quires exp(∆Ω(1)) colors for semi-streaming space (and ∆
Ω(1/α) colors for O(n1+α) space). They further

showed that allowing multiple semi-streaming passes over the stream makes better tradeoffs possible:

one can get an O(∆2)-coloring in 2 passes, and an O(∆)-coloring in O(log∆) passes. On the other hand,

Chakrabarti, Ghosh, and Stoeckl [CGS22], considered a “middle ground” between deterministic and ran-

domized algorithms, namely the adversarially robust algorithms introduced by [BJWY20]. These algo-

rithms work even when stream updates are generated by an adaptive adversary, depending on the al-

gorithm’s previous outputs (and thus implicitly on its internal randomness; observe that deterministic

algorithms are always robust). They showed that a (possibly randomized) robust semi-streaming col-

oring algorithm requires Ω(∆2) colors, while an O(∆)-coloring admits no o(n∆)-space robust algorithm.

The same work also gave a robust semi-streaming algorithm achieving O(∆3) colors. Thus, the results

in [ACS22,CGS22] establish a neat trichotomy for single-pass semi-streaming graph coloring: (i) a (∆+1)-

color palette suffices for standard randomized streaming; (ii) poly(∆) colors are necessary and sufficient

for robust streaming; and (iii) exp(∆) colors are needed for deterministic algorithms.

Many questions in this line of work, however, remain unresolved. Here are two particular ones:

(i) For deterministic algorithms, how many passes are needed to achieve a tight (∆+1)-coloring?

(ii) For robust algorithms, where in the range [∆2,∆3] does the above “poly(∆)” number of colors lie?

1

This paper takes steps towards resolving both these questions.

1.1 Our Contributions

The Deterministic Setting. In this setting, our main result is a multi-pass algorithm for (∆+1)-coloring

that runs in semi-streaming space.

Theorem 1. There is an efficient deterministic semi-streaming algorithm to (∆+ 1)-color an n-vertex

graph, given a stream of its edges arriving in an adversarial order. The algorithm uses O(n log2 n) bits

of space and runs in O(log∆ loglog∆) passes.

The above result shows that we can improve the O(∆)-coloring result of [ACS22] to the combinato-

rially optimal (∆+1)-coloring by paying only an additional O(log log∆) factor in the number of passes.

It is worth pointing out here that in the streaming model, as well as several other cases, it is known that

O(∆)-coloring is an “algorithmically much easier” problem than (∆+1)-coloring. For instance, there are

quite simple single-pass randomized algorithms known for O(∆)-coloring [BG18, ACK19], whereas the

only known streaming (∆+1)-coloring algorithm, due to [ACK19], uses sophisticated tools and a combi-

natorially involved analysis.1

Our algorithm in Theorem 1 uses a variety of novel ideas and techniques. It is inspired by a recent dis-

tributed algorithm of Ghaffari and Kuhn [GK21] that solves (∆+1)-coloring in the CONGEST model. That

algorithm was in turn inspired by earlier algorithms of [BKM20] and [Kuh20]. We build on these works

with non-trivial modifications, additional methodology, and careful analyses. In particular, we must

contend with the limitation that the semi-streaming model does not allow enough space for a typical

vertex to “know” much of its neighborhood; this is in sharp contrast to distributed computing models

(including CONGEST). Moreover, our algorithm achieves roughly O(log∆) passes, whereas the [GK21]

algorithm uses O(log2
∆ logn) distributed rounds; this quantitative difference stems, in part, from our

delicate tuning of parameters in an iterative process that colors vertices in batches.

As a by-product of the technology developed for establishing Theorem 1, we also obtain a similarly

efficient algorithm for the more general problem of (degree+1)-list-coloring. In this problem, the input

specifies a graph G as usual and, for each vertex x, a list Lx of at least deg(x)+1 allowed colors for x; the

goal is to properly color G subject to these lists. In a streaming setting, the input is a sequence of tokens,

each either an edge of G or a pair (x,Lx) for some vertex x; these tokens may be interleaved arbitrarily.

We obtain the following algorithmic result.

Theorem 2. Let C be a set of colors of size O(n2). There is a deterministic semi-streaming algorithm for

(degree+ 1)-list-coloring a graph G given a stream consisting of, in any order, the edges of G and (x,Lx)

pairs specifying the list Lx of allowed colors for a vertex x, where Lx ⊆ C . The algorithm uses O(n log2 n)

bits of space and runs in O(log∆ loglog∆) passes.

The Adversarially Robust Setting. In this setting, our algorithm needs to be correct against an adver-

sary who constructs the input graph adaptively by inserting upcoming edges based on the colorings

returned by the algorithm. This is inherently a single-pass setting. However, we are now allowed to use

randomness. The interaction with the active adversary means that the stream elements might depend

on past outputs, which in turn depend on the random bits used by the algorithm. While [ACK19] gave a

semi-streaming (∆+1)-coloring algorithm in the “non-robust” setting, where the stream is fixed in ad-

vance, [CGS22] showed that a robust semi-streaming algorithm must use Ω(∆2) colors. Our main result

in the robust setting is the following.

1Similar examples of this difference appear in the (randomized) LOCAL algorithms [SW10, CLP18], (deterministic) dynamic

graph algorithms [BCHN18], or even provable separations for the “palette sparsification” technique [ACK19,AA20]. Yet another

example is the closely related problem of O(degeneracy)-coloring versus (degeneracy+ 1)-coloring studied by [BCG20] who

proved that the former admits a (randomized) single-pass semi-streaming algorithm while the latter does not.

2

Theorem 3. There is an O(∆5/2)-coloring algorithm which is robust (with total error probability ≤ δ)

against adaptive adversaries, and runs in O(n logO(1) n · logδ−1) bits of space, given oracle access to O(n∆)

bits of randomness.

The above result improves a robust algorithm of [CGS22], which runs in a similar semi-streaming

amount of space but only gives an O(∆3)-coloring. Further, our robust algorithm admits a smooth

tradeoff between the memory used and the number of colors. Setting the parameters appropriately, we

can improve upon a different robust algorithm of [CGS22] that gives an O(∆2)-coloring using O(n∆
1/2)

space. Restricted to O(∆2) colors, we can improve the space usage to O(n∆
1/3). On the other hand, given

O(n∆
1/2) space, we can reduce the number of colors to O(∆7/4).

Our algorithm overcomes the challenges posed by the adaptive adversary by crucially exploiting the

graph structure and cleverly using modified versions of the known techniques on subgraphs of the in-

put graph. These techniques include those in the adversarially robust literature, such as sketch switch-

ing [BJWY20,CGS22], as well as those in the coloring literature, such graph partitioning and degeneracy-

based coloring [BCG20].

One caveat of the above result is the need for a large number of random bits. The same caveat applies

to the aforementioned robust O(∆3)-coloring algorithm of [CGS22]. One could argue that, in practice,

this is surmountable by using a cryptographic pseudorandom generator. However, if we wish to stick to

the mathematical definition of adversarial robustness (which is an information-theoretic security guar-

antee), we can still obtain an improvement over past work, as shown in the following result.

Theorem 4. There is an adversarially robust O(∆3)-coloring algorithm that runs in semi-streaming space,

even including the random bits used by the algorithm.

1.2 Related work

The study of graph coloring in the classical streaming model was initiated parallelly and independently

by Bera and Ghosh [BG18] and Assadi, Chen, and Khanna [ACK19]. The former work obtained an O(∆)-

coloring algorithm in semi-streaming space, while the latter achieved a tight (∆+1)-coloring in the same

amount of space. The latter work uses an elegant framework called palette sparsification: each node

samples a list of roughly log n colors from the palette of size ∆+ 1, and it is shown that w.h.p. there

exists a proper list-coloring where each node uses a color only from its list. This immediately gives a

semi-streaming (∆+1)-coloring algorithm since one can store only “conflicting” edges that can be shown

to be only Õ(n) many w.h.p.2 This framework implying semi-streaming coloring algorithms was then

explored by Alon and Assadi [AA20] under various palette sizes (based on multiple color parameters) as

well as list sizes. Their results also implied interesting algorithms for coloring triangle-free graphs and

for (degree+1)-list coloring.

Very recently, Assadi, Chen, and Sun [ACS22] studied deterministic ∆-based coloring and showed

that for a single pass, no non-trivial streaming algorithm can be obtained. For semi-streaming space, any

deterministic algorithm needs exp(∆Ω(1))) colors, whereas for O(n1+α) space, ∆Ω(1/α) colors are needed.

Observe that these bounds are essentially matched by the trivial algorithm that stores the graph when∆≤
nα in order to (∆+1)-color it at the end; or just color the graph trivially with n =∆

1/α colors, without even

reading the edges, when ∆ > nα. In light of this, a natural approach is to consider the problem allowing

multiple passes over the input stream. They show that in just one additional pass, an O(∆2)-coloring

can be obtained deterministically, while with O(log∆) passes, we can have a deterministic O(∆)-coloring

algorithm. Another very recent work on ∆-based coloring is that of Assadi, Kumar, and Mittal [AKM22],

2The algorithm that is immediately implied is an exponential-time one where one can store the conflicting edges and obtain

the list-coloring by brute force. An elaborate method was then needed to implement it in polynomial time.

3

who surprisingly proved Brooks’s theorem in the semi-streaming setting: any (connected) graph that is

not a clique or an odd cycle can be colored using exactly ∆ colors in semi-streaming space.

Other works on streaming coloring include the work of Abboud, Censor-Hillel, Khoury, and Paz [ACKP19]

who show that coloring an n-vertex graph with the optimal chromatic number of colors requires Ω(n2/p)

space in p passes. They also show that deciding c-colorability for 3 ≤ c < n (that might be a func-

tion of n) needs Ω((n − c)2/p) space in p passes. Another notable work is that of Bera, Chakrabarti,

and Ghosh [BCG20], who considered the problem with respect to the degeneracy parameter that often

yields more efficient colorings, especially for sparse graphs. They designed a semi-streaming κ(1+o(1))-

coloring algorithm for graphs of degeneracy κ. They also proved that a combinatorially tight (κ+ 1)-

coloring is not algorithmically possible in sublinear space. In particular, semi-streaming coloring needs

κ+Ω(
p
κ) colors. Bhattacharya, Bishnu, Mishra, and Upasana [BBMU21] showed that verifying whether

an input vertex-coloring of a graph is proper is hard in the vertex-arrival streaming model where each

vertex arrives with its color and incident edges. Hence, they consider a relaxed version of the problem

that asks for a (1±ǫ)-estimate of the number of conflicting edges. They prove tight bounds for this prob-

lem on adversarial-order streams and further study it on random-order streams. Recently, Halldorsson,

Kuhn, Nolin, and Tonayan [HKNT22] gave a palette-sparsification-based semi-streaming algorithm for

(degree+1)-list-coloring for any arbitrary list of colors assigned to the nodes, improving upon the work

of [AA20] whose algorithm works only when the color-list of each vertex v is {1, . . . ,deg(v)+1}. Note that

all the works mentioned above are in the “static” streaming model and all their algorithms, except those

in [ACS22], are randomized and non-robust.

Starting with the work of Ben-Eliezer, Jayaram, Woodruff, and Yogev [BJWY20], the adversarially ro-

bust streaming model has seen a flurry of research in the last couple of years [BY20, HKM+20, KMNS21,

BHM+21, WZ21, ACSS21, BEO21, CGS22, CLN+22, Sto23]. Chakrabarti, Ghosh, and Stoeckl [CGS22] were

the first to study graph coloring in this model. They showed a separation between standard and robust

streaming coloring algorithms by establishing lower bounds of (i)Ω(∆2) colors for robust semi-streaming

coloring, and (ii) Ω(n∆) space for robust O(∆)-coloring. In fact, they prove a smooth colors/space trade-

off: a robust K -coloring algorithm requires Ω(n∆
2/K) space. On the upper bound side, they design an

O(∆3)-coloring robust algorithm in semi-streaming space, with oracle access to Õ(n∆) many random

bits. They also obtain an O(∆2)-coloring in Õ(n
p
∆) space (including random bits used).

2 Preliminaries

Notation. Throughout the paper, “log” denotes the base-2 logarithm; [n] denotes the set {1, . . . ,n}; Fp is

the finite field with p elements; 1cond is the indicator function for condition cond, i.e., it takes the value 1

when cond is true, and 0 otherwise; and the notation a ∈R A means that a is drawn uniformly at random

from the finite set A.

A graph G = (V ,E) typically has n = |V | vertices. We may identify G with its set of edges, and write

{u, v} ∈ G to mean that {u, v} is an edge in G . For B ⊆ E , degB (x) denotes the degree of x in the graph

formed by the edges in B . For X ⊆V , G[X] denotes the subgraph of G induced by X .

Adversarially Robust Streaming. In the static streaming setting, an algorithm operates on a long se-

quence 〈e1,e2, . . .〉 of elements, reading them in order. It may make multiple passes over the stream. We

typically aim to design a streaming algorithm with parameters δ and S as low as possible so that, for all

possible input streams, it uses ≤ S bits of space and errs with probability ≤ δ. If the algorithm is deter-

ministic, then δ= 0, and we seek to minimize space usage subject to correctness on all inputs.

In the adversarial setting, we assume that the algorithm is one party to a game between it and an

adversary; the adversary produces a sequence 〈e1,e2, . . .〉 of elements, and can ask the algorithm to report

an intermediate output oi after each new element ei . Unlike the static setting, the next element ei+1

4

produced by the adversary may depend (possibly randomly3) on the transcript 〈e1,o1, . . . ,ei ,oi 〉 of the

game. The algorithm is said to err if at least one of its outputs is incorrect for the problem at hand. In this

setting, we typically aim to find streaming algorithms minimizing S,δ, where here we want the algorithm

to (a) never exceed S bits of space and (b) err with probability ≤ δ, for all possible adversaries.

Colorings. A partial coloring of a graph G = (V ,E) using a palette C (any nonempty finite set) is a

tuple (U ,χ) where U ⊆ V is the set of uncolored vertices and χ : V → C ∪ {⊥} is a function such that

χ(x) =⊥⇔ x ∈U . (we may also simply refer to χ as the partial coloring). The coloring is said to be proper

if, for all {u, v} ∈ E such that u ∉U and v ∉U , we have χ(u) 6= χ(v). A coloring of G is a partial coloring

where U =;.

Given a graph-theoretic parameter ψ, the ψ-coloring (algorithmic) problem asks one to determine a

proper coloring of an input graph G using a palette of size |C | ≤ψ. This paper focuses first on (∆+1)-

coloring and later on poly(∆)-coloring. We also consider the list coloring problem, wherein each x ∈ V

has an associated list (really a set) Lx ⊆ C and we are to find a coloring satisfying χ(x) ∈ Lx for all x.

Specifically, we study the problem (deg+1)-list-coloring, in which |Lx | = deg(x)+1 for each x.

Hash Functions. We will use the following standard properties of families of hash functions. A hash

family H of functions A → B is k-independent if, for all distinct a1, . . . , ak ∈ A, and arbitrary b1, . . . ,bk ∈ B ,

Pr
h∈R H

[
h(a1) = b1 ∧·· ·∧h(ak) = bk

]
= 1/|B |k .

The family is 2-universal if, for all distinct a1, a2 ∈ A,

Pr
h∈R H

[
h(a1) = h(a2)

]
≤ 1/|B | .

Useful Lemmas. These variations of standard lemmas are proved in Appendix A, for completeness.

Lemma 2.1 (A constructive variation on Turán’s theorem). Given a graph with n vertices and m edges,

one can find an independent set of size ≥ n2/(2m +n) in deterministic polynomial time.

Lemma 2.2 (Mix of Chernoff bound and Azuma’s inequality). Let X1, . . . , Xk be a sequence of {0,1} ran-

dom variables, and c ∈ [0,1] a real number for which, for all i ∈ k, E[Xi | X1, . . . , Xi−1] ≤ c. Then

Pr

[
∑

i∈[k]

Xi ≥ (1+ t)kc

]
≤ 2−t kc , assuming t ≥ 3.

3 A (Multipass) Deterministic Algorithm

This section presents our first main result, giving a multipass deterministic semi-streaming algorithm

for (∆+1)-coloring, proving Theorem 1. As usual, let G = (V ,E) denote the input graph, which has n =
|V | vertices and maximum degree ∆. Later, we shall extend our algorithm to the (deg+1)-list-coloring

problem, so it will be helpful to think of each vertex x ∈ V being associated with a set Lx of allowed

colors; for the algorithm we discuss first, Lx = [∆+1] for each x ∈V .

3However, there is always a deterministic adversary at least as effective as any randomized one at making the algorithm fail.

5

3.1 High-Level Organization

The algorithm’s passes are organized as follows. The algorithm proceeds in epochs, where each epoch

starts with a partial coloring χ that has a certain subset U ⊆ V uncolored and ends with a new partial

coloring that extends χ by coloring at least a constant fraction of the vertices in U , thereby shrinking |U |
to α|U |, for some constant α < 1. In the beginning, U = V . After at most

⌈
log1/α∆

⌉
such epochs, we

will have |U | ≤ n/∆: at this point, the algorithm makes a final pass to collect all edges incident to U and

greedily extend χ to a full coloring of G .

Each epoch of the algorithm is divided into stages, where each stage whittles down a set of proposed

colors for each uncolored vertex. To explain this better, the following definition is useful.

Definition 3.1 (partial commitment, slack, potential). A partially committed coloring (PCC) of G is an

assignment of colors and lists to the vertices satisfying the following conditions.

• Every vertex outside a subset U ⊆V of uncolored vertices is assigned a specific color χ(x) ∈ Lx ; the

resulting χ is a proper partial coloring.

• Each x ∈U has an associated set Px of proposed colors, defining a collection P = {Px }x∈U .

• For every two vertices x, y ∈U , either Px = Py or Px ∩Py =;.

We shall denote such a PCC by the tuple (U ,χ,P). Given such a PCC, define the slack of a vertex with

respect to a set T of colors by

slack(x | T) =max{0, |T ∩Lx |− |{y ∈ N(x)àU : χ(y) ∈ T }|} , (1)

and further define sx = slack(x | Px); that is, sx is the number of colors in Px that are available to x in Lx

minus the number of times the colors in Px have appeared in the already colored neighbors of x. Define

the potential of the PCC to be

Φ=Φ(U ,χ,P) =
∑

{x,y}∈E

1x∈U∧y∈U ·1Px=Py
·
(

1

sx
+

1

sy

)
(2)

which sums the quantity (1/sx +1/sy) over all edges {x, y} inside U with Px = Py .

Intuitively, the slack defined here is a lower bound on the number of unused colors available to a

vertex. Our definition differs slightly from the "slack" defined by [HKNT22], where the number of colors

used by the neighbors is known exactly. It turns such a lower bound on the number of unused colors is

sufficient for our algorithm to progressively refine a PCC. The advantage of this lower bound – equiva-

lently, of using an upper bound on the number of used colors, |{y ∈ N(x)àU : χ(y) ∈ T }|, instead of the

exact quantity |T ∩ {χ(y) : y ∈ N(x)àU }| – is that the former is a linear function of the data stream, and

can be easily computed in O(log n) space. Meanwhile, as a consequence of the set disjointness lower

bound in communication complexity, determining the latter can require up to Ω(∆) space. In the LOCAL

and CONGEST models, each vertex can easily store and maintain a list of all its available colors (equiva-

lently, colors used by its neighborhood), so the algorithms of [GK21,BKM20] do not need such a modified

notion of "slack".

The set Free(T, x) := T ∩Lx à {χ(y) : y ∈ N(x)àU } is the set of all colors in T that are available for x,

in light of the local constraints imposed by Lx and χ. Notice that |Free(T, x)| ≥ slack(x | T), since a color

in T might be used more than once in the neighborhood of x, thus reducing the LHS only once, but the

RHS more than once. Hence, if we extend χ to a full coloring by choosing, independently for each x ∈U ,

a uniformly random color in Free(Px , x), the only monochromatic edges we might create are within U

and the number, mmono(U ,χ,P), of such edges satisfies

Emmono(U ,χ,P) =
∑

{x,y}∈E(G[U])
Px=Py

|Free(Px , x)∩Free(Py , y)|
|Free(Px , x)| · |Free(Py , y)|

≤
∑

{x,y}∈E(G[U])
Px=Py

(
1

sx
+

1

sy

)
=Φ . (3)

6

3.2 The Logic of an Epoch: Extending a Partial Coloring

Returning to the algorithm outline, at the start of an epoch, the current partial coloring χ and its cor-

responding set U of uncolored vertices define a trivial PCC where Px = Lx = [∆+1] for each x. We shall

eventually show that the resulting potentialΦ≤ |U |. Each stage in the epoch shrinks these sets Px in such

a way that the potential Φ does not increase much. After several stages, each Px in the PCC becomes a

singleton and the bound on Φ, together with eq. (3), ensures that assigning each x ∈U the sole surviving

color in Px would not create too many monochromatic edges. Now, Lemma 2.1 allows us to commit to

these proposed colors for at least (1−α)|U | of the uncolored vertices; this defines a new partial coloring

and ends the epoch.

We now describe how to shrink the sets Px . For this, view each color as a b-bit vector where b =⌈
log(∆+1)

⌉
according to some canonical mapping, e.g., a ∈ {0,1}b 7→ 1+

∑b
i=1

ai 2i−1. Each set Px will

correspond to a subcube of {0,1}b where the first several bits have been fixed to particular values.4 Each

stage of the r th epoch (except perhaps the last, due to divisibility issues) will shrink each Px by fixing

an additional k bits of its subcube, thus reducing the dimension of the subcube. We choose k := 1+⌊
log(n/|U |)

⌋
, so that |U |2k ≤ 2n; this bound will be important when we analyze the space complexity. The

epoch ends when all bits of each Px have been fixed, making each Px a singleton; clearly, this happens

after ⌈b/k⌉ stages.

This brings us to the heart of the algorithm: we need to describe, for each x ∈U and the particular

value of k for the current epoch, how to fix the next k bits for Px . Let Px,j be the subset of Px where the k

lowest-indexed free bits are set to j ∈ {0,1}k : this partitions Px into 2k subcubes. Define

wx,j =
slack(x | Px,j)∑

i∈{0,1}k slack(x | Px,i)
. (4)

An easy calculation shows that if, for each x, we choose j at random according to the distribution given

by (wx,j)j∈{0,1}k to obtain a new random collection P̃ of proposed color sets for each vertex, then

EΦ(U ,χ,P̃) =Φ(U ,χ,P) . (5)

Therefore, there exists a particular realization P
′ of P̃ such that Φ(U ,χ,P ′) ≤Φ(U ,χ,P). However, it is

not clear how to identify such a P
′ deterministically and in a space-efficient manner in a stream.

A key idea that enables a space-efficient derandomization is to choose the j values for the vertices

x ∈U in a pseudorandom fashion, using a 2-independent family H of hash functions V 7→ [p] for a not-

too-large value p . By using a suitable map g : U ×[p] → {0,1}k , we can use a uniform random value in [p]

to sample from a distribution close enough to the (wx,j) distribution. Then, for each x, we shrink Px to

Px,j(x) where j(x) = g (x,h(x)) and h ∈R H . Let Ph denote the resulting collection of proposed color sets.

It turns out that a prime p = Θ(n log n) suffices for the guarantees we will eventually need. Thus,

by choosing (e.g.) the Carter–Wegman family of affine functions on Fp , we can take |H | = O(n2 log2 n).

This enables us to use two streaming passes with Õ(n) space to identify a specific function h ∈H that is

“approximately best” in the sense of minimizing Φ(U ,χ,Ph). We will then show that the new potential is

at most 1+O(1/log n) times the old. Repeating this argument for each of the O(log n) stages in the epoch

shows that at the end of the epoch, the potential will have increased by at most a constant factor which

will then allow us to shrink U by a constant factor α, as noted earlier.

The above outline suggests O(log n) epochs, each using O(log n) stages, each of which uses O(1)

passes. Later, we shall show that a more careful analysis bounds the number of passes by O(log ∆ loglog∆).

4If ∆+1 is not a power of 2, Px might contain elements not in Lx , but this doesn’t matter because Free(T, x) ⊆ Lx always.

7

3.3 Detailed Algorithm and Proof of Correctness

We now describe the algorithm more formally, by fleshing out the precise logic of an epoch. Let Q
(i)

denote the partition of the color space {0,1}b into subcubes Q (i)
j

defined by setting the i th k-bit block to

each of the 2k possible patterns j; i.e.,

Q (i)
j

:=
{

a ∈ {0,1}b : (aki−k+1, . . . , aki) = j
}

; Q
(i) :=

{
Q (i)

j

}
j∈{0,1}k . (6)

If k does not divide b, we must make an exception for the ⌈b/k⌉th partition, for which the relevant bit

patterns j would be shorter; for clarity of presentation, we shall ignore this edge case in what follows.

Before we proceed, we also need the following lemma, whose proof is given in Appendix A.

Lemma 3.2. For p ≥ 8n log n, and w = (wx,j)x∈U ,j∈{0,1}k there is a function gw : U × [p]→ {0,1}k satisfying:

|g−1
w (x, j)|

p
≤ wx,j

(
1+

1

8log n

)
, ∀ j ∈ {0,1}k

The full logic of the algorithm is given in Algorithm 1.

The most important aspect of the analysis is to quantify the progress made in each epoch and estab-

lish that the colors proposed at the end of each stage do not produce too many monochromatic edges

(i.e., those in F .) This analysis will demonstrate the utility of the potential defined in eq. (2).

Given a PCC (U ,χ,P) where P = {Px }x∈U , define the “conflict degree” of each x ∈U by

dconf(x) = dconf(x;U ,χ,P) := |{y ∈ N(x)∩U : Py = Px }| , (7)

which counts the neighbors of x that could potentially form monochromatic edges with x, were we to as-

sign colors from P to the uncolored vertices. Recall the quantities sx = slack(x | Px) from Definition 3.1.

Lemma 3.3. For every PCC, Φ(U ,χ,P) =
∑

x∈U dconf(x)/sx .

Proof. From the definitions in eqs. (1) and (2), using some straightforward algebra,

Φ(U ,χ,P) =
∑

{u,v}∈E(G[U])
Pu=Pv

(
1

su
+

1

sv

)
=

∑

x∈U

|{y ∈U : {x, y} ∈ E ∧Px =Py }|
sx

=
∑

x∈U

dconf(x)

sx
.

Lemma 3.4. For all x and disjoint sets T1,T2: slack(x | T1 ⊔T2) ≤ slack(x | T1)+slack(x | T2).

Proof. This is straightforward from eq. (1) and the fact that max{0, a1+a2} ≤max{0, a1}+max{0, a2}.

Lemma 3.5. Suppose we start a particular epoch with the partial coloring (U ,χ) and the initial, trivial

PCC (U ,χ,P0). Suppose there are ℓ stages in this epoch and the i th stage begins with the PCC P i . Let

Φi :=Φ(U ,χ,P i) be the corresponding potential, for 0 ≤ i ≤ ℓ. Then Φ0 ≤ |U | and Φℓ ≤ 2|U |.

Proof. Recalling that each Lx ∩Px = Lx = [∆+1] for the initial PCC, we use eqs. (1) and (7) to derive

sx −dconf(x) = max{0,∆+1−|N(x)àU |}−|N(x)∩U | =∆+1−deg(x) ≥ 1.

Thus, dconf(x)/sx ≤ 1 (and is not “0/0”) for all x ∈U . Lemma 3.3 now implies Φ0 ≤ |U |.
We now argue that, between each pair of successive stages, the potential Φi does not increase by

much. First observe that when h is drawn uniformly at random from H , and u 6= v ,

Pr
[
gw(u,h(u))= gw(v,h(v))= j

]
= Pr

[
gw(u,h(u))= j

]
·Pr

[
gw(v,h(v))= j

]

= Pr
[
h(u)∈ g−1

w (u, j)
]
·Pr

[
h(v)∈ g−1

w (v, j)
]

8

Algorithm 1 Deterministic Semi-Streaming Algorithm for (∆+1)-Coloring

1: procedure DETERMINISTIC-COLORING(streamed n-vertex graph G = (V ,E) with max degree ∆)

2: U ←V ; χ(x) ←⊥ for all x ∈V ⊲ all vertices uncolored

3: repeat

4: COLORING-EPOCH(G ,U ,χ) ⊲ shrinks |U | to at most α|U |
5: until |U | ≤ n/∆

6: In one pass, collect every edge incident to a vertex in U

7: Use these edges to greedily complete χ to a proper coloring of G

8: procedure COLORING-EPOCH(graph G , partial coloring (U ,χ))

9: b ←
⌈

log(∆+1)
⌉

⊲ each color is a b-bit vector

10: k ← 1+
⌊

log (n/|U |)
⌋

⊲ number of bits fixed in each stage

11: for each x ∈U do Px ← {0,1}b
⊲ the initial, trivial PCC

12: for each stage i , from 1 through ⌈b/k⌉ do

13: pass 1:

14: for each x ∈U and Q ∈Q
(i) do compute slack(x | Px ∩Q) by using eq. (1)

15: Determine all wx,j values using eq. (4), noting that Px,j = Px ∩Q (i)
j

16: p ← prime in [8n logn,16n logn]; H ← {z 7→ az +b : a,b ∈ Fp } ⊲ Carter–Wegman hashing

17: Implicitly construct gw : U × [p]→ {0,1}k as per Lemma 3.2.

18: For each h ∈H , define Ph = {Px,h }x∈U , where Px,h := Px ∩Q (i)
gw(x,h(x))

19: ⊲ Identify a specific h⋆ ∈H for which Φ(U ,χ,Ph⋆) is not much larger than average, as follows:

20: pass 2:

21: Split H into
p
|H | parts

22: Estimate
∑

h Φ(U ,χ,Ph) for each part, up to (1+1/(8log n)) relative error

23: Pick the part minimizing the estimated sum

24: pass 3:

25: Estimate Φ(U ,χ,h) for each h within the chosen part, up to (1+1/(8log n)) relative error

26: Choose h⋆ as the (approximate) minimizer

27: for each x ∈U do Px ← Px,h⋆ ⊲ constrain the PCC more tightly

28: end-of-epoch pass: ⊲ each Px is now a singleton

29: Collect F ← {{u, v}∈ E : u ∈U , v ∈U , and Pu =Pv } ⊲ we will prove that |F | =O(|U |)
30: In the graph (V ,F), find an independent set I with |I | ≥ (1−α)|U |, using Lemma 2.1

31: for each x ∈ I do ⊲ extend χ by coloring x

32: U ←U à {x}

33: χ(x) ← the sole element in Px

9

≤ wu,jwv,j

(
1+

1

8log n

)2

≤ e1/(4 logn)wu,jwv,j . (8)

To keep the rest the derivation compact, let us abbreviate “slack” to “sk.” The candidate PCCs Ph

defined in line 18 are tightenings of the current PCC in which we pick subcubes according to the specific

hash function h. With h chosen uniformly at random from H :

EΦ(U ,χ,Ph) =
∑

{u,v}∈E

E1u∈U1v∈U ·1Pu,h=Pv,h
·
(

1

sk(u |Pu,h)
+

1

sk(v | Pv,h)

)

=
∑

{u,v}∈E(G[U])

∑

j∈{0,1}k

Pr
[
Pu,h = Pu,j = Pv,j = Pv,h

](
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)

line 18=
∑

{u,v}∈E(G[U])

∑

j∈{0,1}k

1Pu=Pv
Pr

[
gw(u,h(u))= gw(v,h(v))= j

](
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)

eq. (8)
≤

∑
{u,v}∈E(G[U])

Pu=Pv

∑

j∈{0,1}k

e1/(4 logn)wu,jwv,j

(
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)

eq. (4)= e1/(4 logn)
∑

{u,v}∈E(G[U])
Pu=Pv

∑

j∈{0,1}k

sk(u | Pu,j)∑
i sk(u | Pu,i)

·
sk(v | Pv,j)∑
i sk(v | Pv,i)

·
(

1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)

= e1/(4 logn)
∑

{u,v}∈E(G[U])
Pu=Pv

∑

j∈{0,1}k

sk(u |Pu,j)+sk(v | Pv,j)∑
i sk(u | Pu,i) ·

∑
i sk(v | Pv,i)

= e1/(4 logn)
∑

{u,v}∈E(G[U])
Pu=Pv

(
1∑

j sk(u | Pu,j)
+

1∑
j sk(v | Pv,j)

)

lemma 3.4
≤ e1/(4 logn)

∑
{u,v}∈E(G[U])

Pu=Pv

(
1

sk(u | Pu)
+

1

sk(v | Pu)

)

= e1/(4 logn)
Φi . (9)

Thus, picking h⋆ with Φ(U ,χ,Ph⋆) below average would ensure Φi+1 ≤ e1/(4 logn)
Φi . However, due to

precision constraints, each of lines 22 and 25 could contribute a relative error of (1+1/(8log n)), so the

h⋆ actually picked by the algorithm gives only the following weaker guarantee:

Φi+1 ≤
(
1+

1

8log n

)2

e1/(4 logn)
Φi ≤ e1/(2 logn)

Φi .

Since the number of stages in the epoch is ℓ≤ ⌈b/k⌉ ≤ log(∆+1) ≤ log n, we have

Φℓ ≤
(
e1/(2 logn)

)ℓ
Φ0 ≤ e1/2|U | ≤ 2|U | .

The crucial combinatorial property of the (∆+1)-coloring problem is that given any proper partial

coloring, every uncolored vertex is guaranteed to have a free color not in use by its colored neighbors.

The next lemma argues that even as we gradually tighten constraints in our PCC during the stages of an

epoch, a similar guarantee is maintained.

Lemma 3.6. In each epoch, for all x ∈U , the stages maintain the invariant that sx ≥ 1 and after the last

stage we have sx = 1.

10

Proof. At the start of the epoch, sx ≥ |Lx |− |N(x)| = (∆+1)−deg(x) ≥ 1.

Consider a particular stage, which begins with a PCC (U ,χ,P), where P = {Px }x∈U . Fix a vertex x ∈U .

In the next PCC formed at the end of the stage, Px shrinks down to Px,j = Px ∩Q (i)
j

for a pattern j ∈ {0,1}k

satisfying wx,j > 0: the way gw is defined (Lemma 3.2) ensures this. By Lemma 3.4,

∑

i∈{0,1}k

slack(x | Px,i) ≥ slack(x | Px) = sx ≥ 1,

so there exists j ∈ {0,1}k for which slack(x | Px,j) ≥ 1. One such j must be picked as the chosen pattern for

x, because wx,j > 0 implies slack(x | Px,j) > 0. Consequently, the new value of Px chosen at the end of the

stage (line 27) will continue to satisfy the invariant sx ≥ 1.

After the last stage in the epoch, every set Px is a singleton because, in the corresponding subcube

of {0,1}b , all bits have been fixed. It is not possible that Px is empty, because |Px ∩Lx | ≥ sx ≥ 1. Thus

|Px ∩Lx | = sx = 1.

Lemma 3.7. The set F collected at the end of an epoch satisfies |F | ≤ |U |.

Proof. Using the terminology of Lemma 3.5, at the end of an epoch, we have

2|U |
lemma 3.5

≥ Φℓ
lemma 3.3=

∑

x∈U

dconf(x)

sx

lemma 3.6=
∑

x∈U

|{y ∈ N(x)∩U : Px = Py }|
1

= 2|F | .

Lemma 3.8. Each epoch maintains the invariant that (U ,χ) is a proper partial coloring and shrinks the

set of uncolored vertices U to a smaller U ′ with |U ′| ≤ 2
3 |U |.

Proof. As noted before, at the end of the epoch, each set Px is a singleton and the sole color cx ∈ Px is not

used in N(x) because sx 6= 0 (Lemma 3.6). Therefore, the set F collected at the end is precisely the set of

edges that would be monochromatic if we colored each x ∈U with cx . It follows that the end-of-epoch

logic in the algorithm, which commits to these colors only on an independent set in the graph (V ,F),

maintains the invariant of a proper partial coloring.

By Lemma 2.1, (V ,F) contains an independent set I of size

|I | ≥
|U |2

2|F |+ |U |
lemma 3.7

≥
|U |
3

and one can compute I in polynomial time. Therefore, |U ′| = |U |− |I | ≤ 2
3 |U |.

3.4 Space and Pass Complexity

Lemma 3.9. Algorithm 1 runs in O(n log2 n) bits of space and O(log∆ · log log∆) streaming passes.

Proof. For the space bound, it suffices to establish that COLORING-EPOCH runs in O(n log2 n) space. At

each stage of an epoch, the algorithm maintains the current PCC, consisting of the partial coloring (U ,χ)

and the collection P = {Px }x∈U . The former can be stored in O(n log∆) bits directly; so can the latter,

since the subcube structure of Px allows for a natural O(b)=O(log∆)-bit description.

We now turn to the space required to execute the passes. Focus on stage i within epoch r . Computing

the slack values in pass 1 requires |U |2k counters, one for each pair (x,Q (i)
j

), to determine |{y ∈ N(x) :

χ(y) ∈ Px ∩Q (i)
j

}|. Each such counter fits in O(log∆) bits. By our choice of k , the total space bound for

these counters is O(n log∆). Moving on, identifying h⋆ requires keeping track of
p
|H | accumulators,

to evaluate sums of the form given in line 18, in each of passes 2 and 3. These accumulators do not

need to be stored at full precision; a relative error of (1+ 1/(8log n)) is acceptable, so O(log n) bits per

11

accumulator suffice. Since p =Θ(log n) and |H | = p2 (line 16), the total space cost of all the accumulators

is O(
p
|H | log n)=O(n log2 n) bits.

Next, we consider the end-of-epoch pass. By Lemma 3.7, |F | ≤ |U | = O(n) so this pass needs only

O(n logn) bits to collect the edges in F . The rest of its computations happen offline and need no further

storage. This completes the space complexity analysis.

Finally, we account for the number of passes. In epoch r , there are ⌈b/kr ⌉ stages, where kr is the

value of k for the epoch; each such stage makes three streaming passes; additionally, there is one end-

of-epoch pass. There is also one final pass after all epochs are done (line 6). By Lemma 3.8, each epoch

shrinks |U | to at most α = 2/3 times its previous value. Notice that the epochs stop once |U | ≤ n/∆, so

there are at most
⌈

log1/α∆
⌉

epochs. Furthermore, at the start of the r th epoch, |U | ≤ αr−1n, implying

kr ≥ 1+
⌊

(r −1)logα−1
⌋

for this epoch, which in turn upper-bounds the number of stages of the epoch.

Putting it all together, the total number of streaming passes, across all epochs, is

1+
⌈log1/α∆⌉∑

r=1

(
3

⌈
b

kr

⌉
+1

)
=O(log∆)+O(b) ·

⌈log1/α∆⌉∑

r=1

1

kr

=O(log∆) ·
⌈log1/α∆⌉∑

r=1

1

r

=O(log∆ · log log∆) .

This concludes the proof of our first major algorithmic result, which we now recap.

Theorem 5 (Restatement of Theorem 1). There is an efficient deterministic semi-streaming algorithm to

(∆+1)-color an n-vertex graph, given a stream of its edges. The algorithm uses O(n log2 n) bits of space

and runs in O(log∆ log log∆) passes.

3.5 Extensions: List Coloring and Communication Complexity

We can extend Algorithm 1 to handle the more general problem of (deg+1)-list-coloring. This requires a

new technical lemma and a careful refinement of some of the low-level details of the previous algorithm.

Theorem 6 (Restatement of Theorem 2). Let C be a set of colors of size O(n2). There is a deterministic

semi-streaming algorithm for (degree+1)-list-coloring a graph G given a stream consisting of, in any order,

the edges of G and (x,Lx) pairs specifying the list Lx of allowed colors for a vertex x, where Lx ⊆ C . The

algorithm uses O(n log2 n) bits of space and runs in O(log∆ loglog∆) passes.

Here is a technical lemma that is key to the proof of the above.

Lemma 3.10. Let s ≥ 1 be an integer, and let C be a set. There exists a family F of O(|C |2) partitions of C

so that, for every collection L1, . . . ,Lt of subsets of C :

1

|F |
∑

R∈F

∑

i∈[t]

max
S∈R

(|Li ∩S|−1)≤
1
p

s

∑

i∈[t]

(|Li |−1), (10)

In particular, there must exist Q ∈F where
∑

i∈[t] maxS∈Q(|Li ∩S|−1) is less than the right hand side.

Proof. Let H be a 2-universal hash family C → [s], with |H | = O(|C |2). (For example, H = {(x 7→ (ax +
b mod p) mod s) : a,b ∈ Zp , a 6= 0} for p prime and ≥ |C |, as per [CW79].) Let h be a randomly chosen

element of H , and let R = {R1, . . . ,Rs} be the random partition for which Ri = {x ∈C : h(x)= i }. Consider

the function f (x) = x(x +1)/2 defined on [0,∞); because it is convex and increasing on [0,∞), f −1(x) =

12

p
2x +1/4−1/2 is concave and increasing on [0,∞). Because for all z ≥ 1, z −1 = f −1(

(z
2

)
), we have for

any i ∈ [t] that:

max
j∈[s]

(|Li ∩R j |−1) ≤ f −1

(
max
j∈[s]

(
Li ∩R j

2

))
≤ f −1

(
∑

j∈[s]

(
Li ∩R j

2

))
.

Taking expectations and using the concavity of f to apply Jensen’s inequality:

Emax
j∈[s]

(|Li ∩R j |−1) ≤ E f −1

(
∑

j∈[s]

(
Li ∩R j

2

))
≤ f −1

(
E

∑

j∈[s]

(
Li ∩R j

2

))
.

Expressing the sum under the inverse function in terms of h lets us apply the universality of the hash

family:

E

∑

j∈[s]

(
Li ∩R j

2

)
= E

∑

x,y∈Li :x 6=y

1h(x)=h(y) =
∑

x,y∈Li :x 6=y

Pr[h(x)=h(y)] ≤
(
|Li |

2

)
1

s
.

We briefly detour to prove an inequality for f , holding for all z ≥ 1:

f

(
1
p

s
(z −1)

)
=

1p
s

(z −1) · (1p
s

(z −1)+1)

2
=

1

s

(z −1)(z +
p

s −1)

2
≥

1

s

(
z

2

)
,

which implies f −1(1
s

(z
2

)
) ≤ 1p

s
(z −1). Thus:

Emax
j∈[s]

(|Li ∩R j |−1) ≤ f −1

((
|Li |

2

)
1

s

)
≤

√
1

s
(|Li |−1).

By linearity of expectation, it follows

E

∑

i∈[t]

max
j∈[s]

(|Li ∩R j |−1) ≤
√

1

s

∑

i∈[t]

(|Li |−1).

This is equivalent to Eq. 10, if we let F be the set of possible values of R.

Proof of Theorem 2. There are two main changes to the algorithm in Theorem 1. First, because the color

lists Lx are no longer fixed, computing slack(x |Px∩Q) for each x ∈U and Q ∈Q
(i) requires counting both

|{y ∈ N(x)àU :χ(x) ∈ (Px ∩Q)}| as before, and |Px ∩Q∩Lx |. As both quantities are integers in [0, . . . ,∆+1],

and can be computed by incrementing counters each time an edge or (vertex, list of colors) pair arrives,

the total space usage from this stage is still O(log∆)|U |2k .

The other change is that we now adaptively pick the sequence of partitions Q
(1), . . . ,Q(ℓ), and use

more stages. Instead of letting the number ℓ of stages be
⌈

log(∆+1)/k
⌉

, we use ℓ =
⌈

2log(∆+1)/k
⌉
+1

stages instead. For the first
⌈

2log(∆+1)/k
⌉

stages, we adaptively construct partitions using Lemma 3.10

on the Lx with s set to 2k ; the resulting partitions use O(ℓ log |C |) =O(log∆ logn) space to store in total.

Finding the best partition from Lemma 3.10 is complicated by the fact that the algorithm can not

exactly store the color lists Lx for each vertex. Let F be the family of partitions from Lemma 3.10. At

the start of each stage, we use four passes over the stream to identify a partition R ∈ F for which the

quantity
∑

x∈U aR(Px ∩Lx) is below average, for aR(S)= maxR∈R(|S ∩R |−1). This can be done using the

same method as was used to identify an approximately sub-average hash function h⋆ in Algorithm 1.

In the first pass, we split F into O(|F |1/4) parts, and compute
∑

R

∑
x∈U aR(Px ∩Lx) for each part; after

13

the pass completes, we pick the part with the least value of this sum, split it into O(|F |1/4) smaller parts,

and repeat the process. The fourth pass will compute
∑

x∈U aR(Px ∩Lx) for individual partitions R of

the family F ; we let Q
(i) be the best partition from this pass. All this is possible because the value of

aR(Px ∩Lx) can be computed as soon as the pair (x,Lx) arrives in the stream. Consequently, it is possible

to compute, for any family F of partitions,
∑

R∈F

∑
x∈U aR(Px ∩ Lx) in a single pass over the stream,

using O(log n) bits of space. (These sums have integer values, so no approximation is necessary.) As

|H | =O(|C |2) =O(n4), each individual pass requires storing only O(n logn) bits worth of counters.

At the start of the first stage, since all |Lx | ≤ ∆+1, we have
∑

x∈U (|Lx ∩Px |−1) ≤ ∆|U |. Letting jx be

the index of Px, j = Px ∩Q (i)
j

chosen to succeed Px , we have (due to Lemma 3.10).

∑

x∈U

(|Lx ∩Px, jx
|−1) ≤

∑

x∈U

max
j∈[s]

(|Lx ∩Px ∩Q (i)
j
|−1) ≤ 2−k/2

∑

x∈U

(|Lx ∩Px |−1)

Each stage reduces
∑

x∈U (|Lx ∩Px |−1) by a factor of 2−k/2, so after ℓ−1 =
⌈

2log(∆+1)/k
⌉

stages, we have

∑

x∈U

(|Lx ∩Px |−1) ≤∆|U |(2−k/2(ℓ−1)) ≤
∆

∆+1
|U | ≤ |U |

In the last stage, we set Q = {{x} : x ∈ C , where C =
⋃

x∈U Lx . Unlike the other stages, where |Q| ≤ 2k ,

we need to run an additional pass to record, for each x ∈ U , the values of |Lx ∩Px |. This requires only

O(|U | log n) bits. In the following pass to compute slack(x | Px ∩Q) for each x ∈U and Q ∈Q, we use the

fact that slack(x | Px ∩Q) will only be one if Q ⊆ Px ∩Lx and there is no y ∈ N(x)àU satisfying χ(y) ∈Q to

save space; instead of tracking sums for every (x,Q) ∈U ×C combination, we store a {0,1} value for each

(x,Q) ∈ ⊔x∈U {(x,Q) : Q ∈ Lx ∩Px } which is initialized to 1 and set to 0 if the stream contains an edge to a

neighboring y ∈ [n]àU with color in Q . After this stage, the condition |Lx | ≤ 1 holds, as required for the

proof of Theorem 1 to work.

Despite the less efficient partitioning scheme, the algorithm still uses roughly the same amount of

space; for all but the last stage, it still uses 2k |U | counters. The last stage requires one bit for each element

in a list Lx – but since
∑

x∈U (|Lx | −1) ≤ |U |, we have
∑

x∈U |Lx | ≤ 2|U |, which implies only 2|U | bits are

needed.

Storing the per vertex partitions Px requires only ℓk + log(|C |) = O(log n) bits, each, at a given point

in the algorithm. As in the original algorithm, each partition Px can be determined using the sequence

of sets from Q
(1), . . . ,Q(ℓ) that contain it.

The analysis to prove that the potential does not increase by much requires no adjustment.

Finally, we record the following corollary of the above algorithms on the communication complexity

of (∆+1) coloring that may be of independent interest.

Corollary 3.11. There is a communication protocol for finding a (∆+1) coloring of any input graph whose

edges are partitioned between two players using O(n log4 n) bits of communication and O(log∆ loglog∆)

rounds of communication.

Proof. This follows from a standard reduction from a streaming algorithm to a communication protocol.

Let Alice and Bob be the two players, who receive disjoint sets of edges A and B , respectively. They

will run Algorithm 1 on the stream whose first half contains the edges of A, and whose second half con-

tains the edges of B . To do this, Alice initializes the streaming algorithm, and runs it on the first half

of the stream. She then sends a message encoding the state of the algorithm to Bob, who decodes the

message and runs the algorithm on the second half of the stream. Bob then sends the updated state of

the streaming algorithm back to Alice. This process is repeated once for each pass of the streaming al-

gorithm; since the algorithm uses O(n log2 n) bits of space, uses O(log∆ loglog∆) =O(log2 n) passes, the

total number of bits sent by this protocol is O(n log4 n).

14

While it is not hard to obtain an O(n ·polylog (n)) communication protocol for (∆+1) coloring by sim-

ulating the greedy algorithm (and running binary search between Alice and Bob for finding an available

color for each vertex), the interesting part of Corollary 3.11 is that we can achieve a similar communica-

tion guarantee in a much smaller number of rounds of communication.

4 Coloring Robustly Against an Adaptive Adversary

We now turn to the adversarially robust streaming setting. As a reminder, this is inherently a single-pass

setting and our algorithms are allowed to use randomness. However, an algorithm needs to be correct

against an adversary who constructs the input graph adaptively by inserting upcoming edges based on

the colorings returned by the algorithm. This means that the stream elements might depend on past

outputs, which in turn depend on the random bits used by the algorithm. While [ACK19] gave a semi-

streaming (∆+1)-coloring algorithm in the “non-robust” oblivious adversary setting where the stream is

fixed in advance, [CGS22] showed that a robust semi-streaming algorithm must use Ω(∆2) colors. They

also gave an O(∆3)-coloring robust algorithm. In this section, we give an improved O(∆5/2)-coloring

algorithm.

We assume that
p
∆ is an integer (if not, we can work with

⌈p
∆

⌉
which will not affect the asymptotic

color or space bounds). We also assume that ∆=Ω(log2 n); if ∆ is smaller, we can store the entire graph

in semi-streaming space and then color it optimally.

The following graph-theoretic concept plays a crucial role in our algorithm.

Definition 4.1 (degeneracy). The degeneracy of a graph G is the least integer value κ for which every

induced subgraph of G has a vertex of degree ≤ κ. Equivalently, it is the least value κ for which there

is an acyclic orientation of the graph where the maximum out-degree of any vertex is ≤ κ. By greedily

assigning colors to the vertices of this orientation of G in reverse topological order, one obtains a proper

(κ+1)-coloring of G ; we refer to this as a (degeneracy+1)-coloring.

4.1 High-Level Description and Techniques

We first set up some terminology to help us outline our algorithm.

• Buffer. As the stream arrives, we explicitly store a buffer B of at most n edges. When the buffer is

full (i.e., has reached its capacity of n edges), we empty it completely, and move on to storing the

next batch of n edges.

• Epoch. We say we are in the i th epoch when we are storing the i th chunk of n edges in our buffer.

• Level. We define levels for the vertices with respect to their degree in the (entire) graph seen so

far. At the point of query, we say that a vertex is in level ℓ, if its degree in the current graph is in

((ℓ−1)
p
∆,ℓ

p
∆].

• Zone (fast and slow). We define zones (fast or slow) for the vertices with respect to their degree

in the buffer B . At the time of query, we say that a vertex v is in the fast zone if degB (v) >
p
∆;

otherwise, we say that it is in the slow zone. We also use the terms slow vertex and fast vertex,

respectively.

• Block. We have multiple coloring functions, denoted by hi and gi , that assign each node a color

uniformly at random from a palette of suitable size (not to be confused with the final proper color-

ing; these colorings are improper). As a result, we obtain a partition of the nodes into monochro-

matic classes that we call “blocks.” A block produced by a coloring function f is called an f -block.

More formally, for each c in the range of f , the set of nodes {v ∈V : f (v) = c} is called an f -block.

15

• f -Monochromatic. An edge {u, v} with f (u)= f (v) is called f -monochromatic.

• f -Sketches. For a function f we call the underlying sketch of the algorithm, which receives edges

of the graph and stores it only if it is f -monochromatic, as an f -sketch.

Next, we describe how to color the slow vertices using O(∆5/2) colors in semi-streaming space. Then

we do the same for the fast vertices.

Coloring slow vertices. Consider breaking the edge stream into ∆ “chunks” of size n each. As described

above, our buffer B basically stores a chunk from start to end, and then deletes it entirely and moves on

to the next chunk. We initialize ∆ many coloring functions h1, . . . ,h∆ that run in parallel. For each i ,

the function hi assigns each node a color from [∆2] uniformly at random. An hi -sketch (see definition

above) processes the prefix of the stream until the end of chunk i . Recall that “processing” means it

stores a received edge (u, v) in the set Ai if it is hi -monochromatic.

Suppose a query arrives in the current epoch curr. Fix a subgraph induced by only the slow vertices

in an arbitrary hcurr-block on the edge set Acurr−1 ∪B (set A0 := ;). Recolor this subgraph using an

offline ∆
′ + 1-coloring algorithm where ∆

′ is its max-degree. Now do this for each hcurr-block, using

fresh palettes for the distinct blocks. We then return the resultant coloring (for the slow nodes). We now

argue that the number of edges stored in (∪i Ai) is roughly O(n) and the number of colors used is O(∆5/2).

Observe that for each i , the hi -sketch processes the prefix of the stream until the end of epoch i . But

note that, until that point, we only base our output on A j s for j < i , which are independent on hi in

particular. Therefore, we ensure that each hi -sketch processes a part of the stream independent of their

randomness. Hence, an edge (u, v) received by an hi -sketch is hi -monochromatic with probability 1/∆2.

Since it receives at most n∆ edges, it stores only O(n∆/∆2) = O(n/∆) edges in expectation in Ai . By a

Chernoff Bound argument, the actual value is tightly concentrated around this expectation w.h.p. Then,

the ∆ sets A1, . . . , A∆ store roughly O(n/∆ ·∆)=O(n) edges in total w.h.p.

Now, we first verify that it properly colors the graph induced by the slow nodes. Observe that we

indeed stored each edge of the input graph, which is contained in any hcurr block of slow vertices, in

Acurr−1 ∪B . This is because if it is in B , we have definitely stored it, and otherwise, it was in an epoch

≤ curr−1. Therefore, the hcurr−1-sketch received it and must have stored it in Acurr−1. This means each

intra-block edge is properly colored by the offline algorithm, and each inter-block edge is also properly

colored since we use distinct palettes for distinct blocks.

Now we argue the color bound. For each slow node, an hi -sketch receives at most ∆ edges incident

to it and hence, Ai stores O(∆ ·1/∆2) = O(1/∆) edges incident to it in expectation (by the previous argu-

ment). By a Chernoff Bound argument and taking union bound over all nodes, we get that each of them

has degree roughly O(log n) in Ai w.h.p. Further, since these nodes are slow, they have degree at most
p
∆

in B . Therefore, the degree of each slow node in the edge set Acurr−1∪B is O(
p
∆+log n)=O(

p
∆) since ∆

is assumed to be Ω(log2 n). Hence, each hcurr-block of slow nodes induced on Acurr−1∪B is colored with

a fresh palette of O(
p
∆) colors by the offline algorithm. There are ∆

2 many hcurr-blocks, and therefore,

we use O(∆2 ·
p
∆) =O(∆5/2) colors.

Coloring fast vertices. To handle these, we use another
p
∆ coloring functions g1, . . . , gp

∆
. Each gi

assigns each node a color from [∆3/2] uniformly at random. When an edge {u, v} arrives, let ℓ be the

maximum between the two levels of u and v . We send it to the gi -sketches for all i ≥ ℓ+1. Recall that a

gi -sketch then stores the edge in the set Ci only if it is gi -monochromatic, i.e., if gi (u) = gi (v).

We prove that each gi -sketch processes edges independent of their randomness. This is the tricky

part. Intuitively, for each edge {u, v} that a gi -sketch receives, the levels of u and v were strictly smaller

than i when it was inserted. Thus, the only values g j (u) and g j (v) that were used to return outputs

until then were for j < i . Hence, gi (u) and gi (v) were completely unknown to the adversary when {u, v}

was inserted. Thus, the edge stream received by each gi -sketch is independent of the randomness “that

16

matters” in processing it. Hence, since the probability that each edge is gi -monochromatic is 1/∆3/2,

each gi -sketch stores roughly O(n∆/∆3/2) =O(n/
p
∆) edges in Ci . Thus, the total number of edges stored

by C1, . . . ,Cp
∆

is O(n/
p
∆ ·

p
∆) =O(n).

When a query arrives, for each level i , we consider the fast vertices in each gi -block. Then consider

the subgraph induced by these vertices on the edge set Ci ∪B . Color it using a (degeneracy+1)-coloring

offline algorithm. We prove that this colors the fast vertices properly with O(∆5/2) colors.

To verify that it is a proper coloring, we need to show that the subgraph of G induced on each gi -block

of fast vertices is stored in Ci ∪B . This follows from the “fastness” property of the nodes: if any such edge

{u, v} is not in the buffer B , then, since the degrees of u and v increased by at least
p
∆ in the buffer, the

nodes u and v must have been at levels lower than i when {u, v} was inserted. Therefore, it was fed to

the gi -sketch, which stored it since it is gi -monochromatic. Hence, each intra-block edge of fast vertices

is properly colored by the offline algorithm, and each inter-block edge is also properly colored since we

use distinct palettes for distinct blocks.

4.2 The Robust Algorithm and its Analysis

We now present the pseudocode of our algorithm in Algorithm 2. The analysis of correctness, robustness,

space usage, and color bound is given below.

Lemma 4.2. With high probability, for all vertices x ∈V , we have
∑

i∈[
p
∆] dCi

(v)=O(log n).

Proof. For any x ∈ V , let D be the random variable for the degree of x at the end of the stream, and let

{x,Y1}, {x,Y2}, ... {x,YD } be the edges added adjacent to x by the adversary, in order. For all k ∈ [∆] and

ℓ ∈
p
∆, let Zk ,ℓ be the random variable which is 1 if k ≤ D and the algorithm stores the edge {x,Yk } in the

set Cℓ, and zero otherwise. The edge {x,Yk }, assuming it exists, will be stored in Ci only if gi (x) = gi (Y)

and i ≥
⌈

max(d(x),d(Yk))p
∆

⌉
+ 1, where d (x) and d (Yk) are the values of the degree counter at the time the

edge was added. Now, consider the sequence of random variables,

Z1,1, . . . , Z1,
p
∆

, Z2,1, . . . , Z2,
p
∆

, . . . , Z∆,1, . . . , Z
∆,
p
∆

(11)

Their sum is precisely
∑

ℓ∈[
p
∆] dCℓ

(x). In order to bound this sum with high probability, we would like

to use Lemma 2.2, but in order for that to work we need to prove that the expectation of a given Zk ,ℓ,

conditional on all the earlier terms in the sequence, is bounded. Let ≺ indicate the lexicographic order

on pairs of the form (k ′,ℓ′), so that (k ′′,ℓ′′) ≺ (k ′,ℓ′) if either k ′′ < k ′, or (k ′′ = k ′ and ℓ′′ < ℓ′.). Define

Z≺(k ,ℓ) to be the vector (Zk ′,ℓ′)(k ′,ℓ′)≺(k ,ℓ). We want to prove an upper bound on E[Zk ,ℓ | Z≺(k ,ℓ)]. Intuitively,

the edge {x,Yk } chosen by the adversary will either definitely not be stored in Ck – because e.g. one of

the degrees of the endpoints is too large – or, when it is time to check whether gℓ(x) = gℓ(Yk), the value

read from gℓ(Yk) will not have been revealed to the adversary so far, nor will it have been read as part of

any test to determine if {x,Yk ′} should be stored in Ck ′ , for (k ′,k ′) ≺ (k ,k); so gℓ(Yk) will be independent

of the variables in Z≺(k ,ℓ), and will equal gℓ(x) with probability exactly 1/∆3/2. Either way, we will find

E[Zk ,ℓ | Z≺(k ,ℓ)] ≤ 1/∆3/2. (A more formal proof of this fact is provided as Lemma A.4 in Appendix A)

Now, applying Lemma 2.2 to the sequence of random variables from Eq. 11, we obtain:

Pr

[
∑

ℓ∈[
p
∆]

dCℓ
(x) ≥ 5log n

]
≤ Pr

[
∑

k∈[∆]

∑

ℓ∈[
p
∆]

Zk ,ℓ ≥∆
3/2 ·

1

∆3/2
(1+4log n)

]
≤ 2−4 logn =

1

n4
.

Then taking a union bound of this event for each x ∈ V , we conclude that
∑

i∈[
p
∆] dCi

(x) = O(log n)

holds for all x with high probability.

Lemma 4.3. With high probability, for all vertices x ∈V , we have
∑

i∈[∆] dAi
(v)=O(log n).

17

Algorithm 2 Adversarially Robust O(∆2.5)-Coloring in Semi-Streaming Space

Input: Stream of edge insertions of an n-vertex graph G = (V ,E)

Initialize:

1: d (v)← 0 for each v ∈V ⊲ degree counters

2: for i from 1 to [∆] do ⊲ ∆ parallel copies for ∆ possible epochs

3: Let hi : V →
[
∆

2
]

be uniformly random ⊲ hi assigns each node a color from
[
∆

2
]

u.a.r.

4: Ai ←; ⊲ edges stored by hi -sketch

5: for i from 1 to
[p

∆
]

do ⊲
p
∆ parallel copies for

p
∆ possible levels

6: Let gi : V →
[
∆

3/2
]

be uniformly random ⊲ gi assigns each node a color from
[
∆

3/2
]

u.a.r.

7: Ci ←; ⊲ edges stored by gi -sketch

8: B ←; ⊲ buffer

9: curr← 1 ⊲ current epoch number

Process(edge {u, v}):

10: if |B | = n then

11: B ←;; curr← curr+1 ⊲ Empty buffer if full and update epoch number

12: B ← B ∪ {{u, v}}; ⊲ Update buffer and buffer size

13: d (u)← d (u)+1; d (v)← d (v)+1 ⊲ Increase degrees of u and v

14: for i from (curr+1) to ∆ do ⊲ Consider copies corresponding to higher epochs

15: if hi (u) =hi (v) then Ai ← Ai ∪ {{u, v}} ⊲ Store hi -monochromatic edges in Ai

16: for i from
⌈

max{d(u),d(v)}p
∆

⌉
+1 to ∆ do ⊲ Consider levels higher than both u and v

17: if gi (u)= gi (v) then Ci ←Ci ∪ {{u, v}}. ⊲ Store gi -monochromatic edges in Ci

Query():

18: F ← {v ∈V : degB (v)>
p
∆} ⊲ F contains fast vertices that have received >

p
∆ edges in the buffer

19: S ←V àF ⊲ S contains the remaining slow vertices

20: for c from 1 to [∆2] do

21: Scurr(c) ← {w ∈ S : hcurr(w)= c} ⊲ Consider each hcurr-block among slow vertices

22: Using fresh colors, (degree+1)-color subgraph induced by Scurr(c) on edge set Acurr−1 ∪B

23: for ℓ from 1 to
[p

∆
]

do

24: for c from 1 to
[
∆

3/2
]

do

25: F (ℓ,c)←
{

w ∈ F :
⌈

d(w)p
∆

⌉
= ℓ, and gℓ(w)= c

}
⊲ Consider each gℓ-block among fast vertices

26: Using fresh colors, (degeneracy+1)-color subgraph induced by F (ℓ,c) on edge set Cℓ∪B

27: Output resultant coloring for S ∪F =V

Proof. The argument here is essentially the same as for the proof of Lemma 4.2, so we will skip most of

the details, and describe briefly what changes.

Instead of defining indicator random variables Zk ,ℓ for the event that the Algorithm 2 stores a given

edge {x,Yk } in Cℓ, we define indicator random variables Zk ,i , for i ∈ [∆], for the event that the algorithm

stores {x,Yk } in Ai . With a similar lexicographically ordered sequence of the Zk ,i , one can prove that

each random variable Zk ,i has expectation ≤ 1
∆2 , even after conditioning on the values of all the earlier

random variables in the sequence. This will use the observation that, if the answer to whether the edge

{x,Yk } will be stored in the set Ai depends on the value of hi (Yk), then the value of hi (Yk) has not been

18

revealed to the adversary. Applying Lemma 2.2, one will then find:

Pr

[
∑

i∈[∆]

dAi
(x) ≥ 5log n

]
≤ Pr

[
∑

k∈[∆]

∑

i∈[∆]

Zk ,i ≥∆
2 ·

1

∆2
(1+4log n)

]
≤ 2−4 logn =

1

n4
.

The proof is completed by taking a union bound.

Lemma 4.4. The space usage of Algorithm 2 is Õ(n) bits, with high probability.

Proof. By Lemmas 4.3 and 4.2, all vertices x ∈ V satisfies
∑

i∈[∆] dCi
(v) = O(log n), and

∑
i∈[∆] dCi

(v) =
O(log n), with high probability. Since |Ci | = 1

2

∑
x∈V dCi

(x), and |Ai | = 1
2

∑
x∈V dAi

(x), it follows Algorithm 2

stores O(n log n) edges in total in
⋃

i∈[∆] Ai ∪
⋃

i∈[
p
∆] Ci . Additionally, it stores a buffer B of n edges. Hence,

the algorithm stores Õ(n) edges in total. Further, it stores a degree counter for each node and a couple of

counters for tracking the buffer size and the epoch number. These take an additional Õ(n) bits of space.

Thus, the total space usage of the algorithm is Õ(n) bits.

Lemma 4.5. At any point in the stream, for each ℓ ∈ [
p
∆] and c ∈ [∆3/2], the degeneracy of the subgraph

induced by the vertex set F (ℓ,c) on the edge set Cℓ∪B is O(
p
∆), w.h.p.

Proof. To every vertex v ∈ F (ℓ,c), define tv to be the length of the input stream at the time that the degree

counter d (v) of v increased from (ℓ−1)
p
∆ to (ℓ−1)

p
∆+1; in other words, the time that vertex v entered

level ℓ. By Lemma 4.2, with high probability it holds that dCℓ
(v) = O(log n), so the set Cℓ contributes at

most O(log n) = O(
p
∆) to the degeneracy of the induced subgraph of the edge set Cℓ∪B on the vertex

set F (ℓ,c).

It thus suffices to prove that the degeneracy of the graph H on vertices of F (ℓ,c) formed by edges

from B àCℓ is ≤
p
∆. Orient each edge {u, v} in H from u to v if tv ≥ tu , and from v to u otherwise. We

will prove that the out-degree of each vertex from F (ℓ,c) in H will be ≤
p
∆.

Fix some x ∈ F (ℓ,c); for each edge (x, y) ∈ H , let dx y be the value of d (x) directly after the streaming

algorithm processed the edge {x, y}. Because x ∈ F (ℓ,c), we have dx y ≤ ℓ
p
∆. Since x, y ∈ F (ℓ,c), gℓ(x) =

gℓ(y)= c . Because {x, y}∈ BàCℓ, max(dx y ,dy x) must have been ≥ (ℓ−1)
p
∆+1 – otherwise the algorithm

would have recorded the edge {x, y} in Cℓ. Now the orientation of the edge applies: because ty ≥ tx , the

vertex x must have reached degree (ℓ−1)
p
∆+1 at the same time or before y did. Thus dx y ≤ (ℓ−1)

p
∆

implies dy x ≤ (ℓ−1)
p
∆; since we know max(dx y ,dy x) > (ℓ−1)

p
∆, it follows dx y ≤ (ℓ−1)

p
∆. Since the

variable d (x) increases with each new edge adjacent to x that arrives, and dx y ∈ [(ℓ−1)
p
∆+1,ℓ

p
∆] for

all out-edges (x, y) of x in H , we conclude by the pigeonhole principle that x has out-degree ≤
p
∆ in H .

This completes the proof that the degeneracy of H is
p
∆, and thus of the lemma.

Lemma 4.6. Whenever queried, Algorithm 2 outputs a proper coloring of the current graph G and uses

O(∆5/2) colors w.h.p.

Proof. By Lemma 4.3 and Lemma 4.2, with high probability,

max
x∈V

(
∑

i∈[
p
∆]

dCi
(v)+

∑

i∈[∆]

dAi
(v)

)
=O(log n) (12)

We shall see that if this holds, then Algorithm 2 will produce an O(∆2.5) coloring of the graph.

The total number of colors used is the sum of the number of colors used for the coloring of each of the

subsets of vertices Scurr(c) (for c ∈ [∆2]) and F (ℓ,c) (for c ∈ ∆
3/2,ℓ ∈

p
∆). Because each of these subsets

uses a fresh set of colors, and the subsets together disjointly cover the entire vertex set, the coloring

output by Algorithm 2 is valid if an only if all the individual subset colorings are valid.

19

For each c ∈ [∆2], consider the set Scurr(c). For each edge {x, y} in the graph, both of whose endpoints

are in Scurr(c), we observe that either the edge {x, y} was added while the value of curr was less than it

was now – in which the algorithm would have stored {x, y}∈ Acurr, because hcurr(x) = hcurr(y) – or edge

{x, y} was added while curr had its current value – in which case {x, y} is in the set B . Thus, Acurr∪B

includes all the edges of the subgraph of G induced by Scurr(c), so the degree + 1 coloring of Scurr(c) will

be valid.

Every vertex x in Scurr(c) satisfies degB (x)≤
p
∆, by the definition of the set S of slow vertices. By Eq.

12, degCcurr
(x) = O(log n) = O(

p
∆). Thus the maximum degree the edge set Ccurr∪B for any vertex in

Scurr(c) will be O(
p
∆), and so a degree+1 coloring will only use O(

p
∆) colors.

Now for c ∈ [∆3/2] and ℓ ∈ [
p
∆], consider the set F (ℓ,c) of vertices. To prove that the coloring of

this set is correct, we must show that every edge {x, y} which is contained in G , and which has both

endpoints in F (ℓ,c), must be recorded in either B or in Cℓ. Let dx and dy be the values of d (x) and

d (y) after the Algorithm 2 processes the edge {x, y}, i.e., after Line 13 has executed. We have two cases:

either ℓx,y =
⌈

max(dx ,dy)/
p
∆

⌉
is equal to ℓ, or it must be less than ℓ. If ℓx,y < ℓ, then the edge will be

recorded in Cℓ by Line 17. Both the degree check and the check that gℓ(x) = gℓ(y) will pass, the latter

because x, y ∈ F (ℓ,c) implies gℓ(x) = gℓ(y) = c . On the other hand, if ℓx,y = ℓ, then say without loss of

generality that
⌈

dx /
p
∆

⌉
= ℓ – this implies the degree of x just after the edge {x, y} was added was at least

(ℓ−1)
p
∆+1. Meanwhile, because x ∈ F (ℓ,c), the current degree of x must be at most (ℓ−1)

p
∆. As each

new edge adjacent to x increases d (x) by one, {x, y} must be one of the
p
∆ most recent edges added

adjacent to x. Since x ∈ F , the last
p
∆ edges adjacent to x are all stored in B , and thus {x, y} ∈ B . The

completes the proof that the coloring of F (ℓ,c) will be correct.

By Lemma 4.5, the degeneracy of the subgraph induced by the vertex set F (ℓ,c) on edge set Cℓ∪B

will be O(
p
∆), assuming Eq. 12 holds. As Algorithm 2 computes a degeneracy+1 coloring of this graph,

it will use O(
p
∆) colors.

We have proven that each of the subsets of the form Scurr(c) or F (ℓ,c) will be properly colored using

O(
p
∆) fresh colors. Since there are 2∆2 such subsets in total, we conclude that algorithm Algorithm 2

produces an O(∆5/2) coloring of the graph as a whole.

Corollary 4.7. By adjusting parameters of Algorithm 2, we can obtain a robust O(∆(5−3β)/2)-coloring al-

gorithm using O(n∆
β) space.

Proof. These parameter changes do not significantly affect the proofs of correctness for Algorithm 2.

As before, we assume that the powers of ∆ given here are integers, and that ∆=Ω(log2 n):

• Change the buffer replacement frequency (Line 10) from n to n∆
β. Because a graph stream with

maximum degree ∆ contains at most n∆/2 edges, reduce the number of epochs from ∆ to ∆
1−β.

The for loops initializing, updating, and querying the variables hi and Ai should have bounds

adjusted accordingly.

• Reduce the range of the functions hi from [∆2] to [∆2−2β]. The expected number of edges stored in

all of the sets Ai will now be roughly:

epochs×|G|
slow blocks

=
∆

1−β ·O(n∆)

∆2−2β
=O(n∆

β) ,

and with high probability, the space usage should not exceed this by more than a logarithmic fac-

tor.

• Increase the threshold for a vertex to be considered "fast" from
p
∆ to ∆

(1+β)/2. To match this, the

level of a vertex will now be computed as
⌈

d(v)
∆(1+β)/2

⌉
, and the number of levels reduced from

p
∆ to

20

∆
(1−β)/2. Again, all of the for loops related to the fast zone of the algorithm need to have their

bounds adjusted.

• Reduce the range of the functions gℓ from [∆3/2] to [∆(1−β)3/2]. The expected number of edges

stored in all of the sets Cℓ will now be roughly:

levels×|G|
fast blocks

=
∆

(1−β)/2 ·O(n∆)

∆(1−β)3/2
=O(n∆

2β) .

The number of colors used by the vertices in the slow zone will be:

slow blocks× (O(# fast threshold)+O(log n))=∆
2−βO(∆(1+β)/2) =O(∆(5−3β)/2) ,

and by the fast zone:

levels×# fast blocks×O(# fast threshold)+ log n)) =∆
(1−β)/2

∆
(1−β)3/2O(∆(1+β)/2) =O(∆(5−3β)/2) .

Combining the two, we find the modified algorithm produces a O(∆(5−3β)/2) coloring with high probabil-

ity.

4.3 A Randomness-Efficient Robust Algorithm

Theorem 7. Algorithm 3 is an adversarially robust O(∆3) coloring algorithm, which uses Õ(n) bits of space

(including random bits used by the algorithm).

Proof. The only step of Algorithm 3 that an adversary could make fail is Line 15.

By Lemma 4.8, this happens with 1/poly(n) probability. Assuming Line 15 does not fail, Lemma 4.9

proves that the output of the algorithm is a valid (∆+ 1)∆2 coloring. Finally, Lemma 4.10 verifies that

Algorithm 3 uses at most Õ(n) bits of space and of randomness.

Lemma 4.8. Line 15 of Algorithm 3 will execute successfully, with high probability, on input streams pro-

vided by an adaptive adversary.

Proof. We first remark that the time range in which Algorithm 3 updates a given set Di , j is disjoint from

and happens before Algorithm 3 first uses the set Di , j . The set Di , j is only updated when curr< i ; and

only used in the query routine when curr = i . Consequently, looking at the outputs of the algorithm

does not help an adversary ensure any property of Di , j . It suffices, then, to prove that for a given i , that

Line 15 succeeds with high probability on any fixed input stream.

Let G be the graph encoded by the first n(i −1) edges of the input stream. We will prove that for each

j ∈ [P],

Pr

[
Di , j ≥

7n

∆

]
≤

1

2
. (13)

Since the hi , j are chosen independently, the event from Eq. 13 is true for all values of j ∈ P is ≤ (1/2)P ≤
1/n10; thus Line 15 succeeds with high probability.

Now fix j ; for each v ∈V , and b ∈ [ℓ2], let Xv,b be the indicator random variable which is 1 if hi , j (v) =
b. We have

|Di , j | =
∑

{u,v}∈G

∑

b∈[ℓ2]

Xu,b Xv,b .

21

Algorithm 3 Randomness-Efficient Adversarially Robust O(∆3)-Coloring in Semi-Streaming Space

Input: Stream of edge insertions of an n-vertex graph G = (V ,E)

Initialize:

Define P :=
⌈

10log n
⌉

, and let ℓ= 2⌊log∆⌋ be the greatest power of 2 which is ≤∆

Let U be a 4-independent family of hash functions from V to [ℓ2], of size poly(n)

1: for i ∈ [∆], j ∈ [P] do

2: hi , j be a uniformly random function from U mapping V to [ℓ2]

3: Di , j ←; ⊲ Either a set of hi , j -monochromatic edges, or ⊥ after invalidation

4: B ←; ⊲ buffer of edges from this epoch

5: curr← 1 ⊲ current epoch number

Process(edge {u, v}):

6: if |B | = n then

7: B ←;; curr← curr+1 ⊲ End current epoch, switch to next

8: B ← B ∪ {{u, v}}; ⊲ Update current buffer

9: for i from curr+1 to ∆, and j ∈ [P] do

10: if hi , j (u)= hi , j (v) then ⊲ For hi , j -monochromatic edges...

11: if Di , j 6= ⊥∧|Di , j | < 7n
∆

then

12: Di , j ← Di , j ∪ {{u, v}} ⊲ Record edge in Di , j if there is space

13: else

14: Di , j ←⊥ ⊲ Wipe buffer Di , j if it gets too large

Query():

15: Let k =min{ j ∈ [P] : Dcurr, j 6= ⊥} ⊲ This can fail if all Dcurr, j =⊥
16: Let χ= greedy coloring of Dcurr,k ∪B

17: Output the coloring where y ∈V is assigned (χ(y),hcurr, j (y))∈ [(∆+1)]× [ℓ2]

Because hi , j is drawn from a 4-independent family, in particular we have Pr[hi , j (u)= hi , j (v)= b]= 1/ℓ4,

so

E |Di , j | =
∑

{u,v}∈G

1

ℓ2
=

|G|
ℓ2

≤
4|G|
∆2

,

and, letting P3(G) = {{u, v, w }∈V 3 : {u, v}∈G ∧ {v, w }∈G} be the set of ≤ |G|∆ paths of length 2,

Var |Di , j | = E |Di , j |2 − (E |Di , j |)2

= E

(
∑

{u,v}∈G

∑

b∈[ℓ2]

Xu,b Xv,b

)2

− (E |Di , j |)2

≤
∑

{u,v}∈G

∑

{v,y}∈G :{u,v}∩{v,y}=;

∑

b∈[ℓ2]

∑

c∈[ℓ]2

EXu,b Xv,b Xw,c Xy,c

+
∑

{u,v,w}∈P3(G)

∑

b∈[ℓ2]

E[Xu,b Xv,b Xw,b]

+
∑

{u,v}∈P3(G)

∑

b∈[ℓ2]

E[Xu,b Xv,b]− (E |Di , j |)2 .

By the 4-independence of the family from which hi , j is drawn, we have E[Xu,b Xv,b Xw,c Xy,c] = 1/ℓ8,

22

E[Xu,b Xv,b Xw,b] = 1/ℓ6 and E[Xu,b Xv,b] = 1/ℓ4, so:

Var |Di , j | ≤
|G|2

ℓ4
−

(|G|
ℓ2

)2

+
|G|∆
ℓ4

+
|G|
ℓ2

≤
16|G|
∆3

+
4|G|
∆2

.

Because a graph of maximum degree ∆ can contain at most n∆
2 edges, |G| ≤ n∆

2 , so:

E |Di , j | ≤
2n

∆
and Var |Di , j | ≤

10n

∆
.

By Chebyshev’s inequality:

Pr

[
|Di , j | ≥

7n

∆

]
≤ Pr

[
||Di , j |−E |Di , j || ≥

5n

∆

]
≤

(10n)/∆

((5n)/∆)2
≤

10

25

∆

n
≤

1

2
.

This is precisely Eq. 13.

Lemma 4.9. If Line 15 does not fail, then Algorithm 3 outputs a valid (∆+ 1)(∆2) coloring of the input

graph.

Proof. We need to prove that for each edge {u, v} in the graph, the coloring assigns different values to

u and to v . Let k be the value of k chosen at Line 15, and let c be the current value of curr. Since

Dcurr,k 6= ⊥, the set Dc ,k contains all edges {a,b} in the graph for which hc ,k (a) =hc ,k (b), and, at the time

the edge was added, curr < c . All edges for which curr = c held at the time the edge was added are

stored in B . If hcurr,k (u) 6= hcurr,k (v), then the colors (χ(u),hcurr,k (u)) and (χ(v),hcurr,k (v)) assigned to

u and v differ in the second coordinate. Otherwise, the edge {u, v} ∈ Dcurr,k ∪B , so the greedy coloring

of Dcurr,k ∪B will assign different values to χ(u) and χ(v). This ensures the colors assigned to u and v

differ in the first coordinate.

Finally, the output color space [(∆+1)]× [ℓ2] has size ≤ (∆+1)∆2 =O(∆3).

Lemma 4.10. Algorithm 3 requires only Õ(n) bits of space; this includes random bits.

Proof. Because |U | =O(poly n), picking a random hash function from U requires only O(log n) random

bits. As the algorithm stores ∆P = O(∆ log n) of these hash functions as (hi , j)i∈[∆], j∈[P], the total space

needed by these function is O(∆(log n)2).

Next, for each of the sets of edges Di , j , for i ∈ [∆], j ∈ [P], Lines 11 through 14 ensure that |Di , j | is

always ≤ 7n
∆
+1; sets that grow too large are replaced by ⊥. Since edges can be stored using O(log n) bits,

the total space usage of all the Di , j is O
(

n
∆

)
∆P ·O(log n) = O

(
n(log n)2

)
. Similarly, the buffer B never

contains more than n edges, since it is reset when the condition of Line 6 is true; thus B can be stored

with O(n logn) bits. The counter curr is negligible.

In total, the algorithm needs O
(
∆(log n)2

)
+O

(
n(logn)2

)
= Õ(n) bits of space.

References

[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring. In Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume 176 of LIPIcs, pages

6:1–6:22, 2020.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+ 1) vertex coloring.

In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 767–786, 2019.

23

[ACKP19] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower

bounds. CoRR, abs/1901.01630, 2019.

[ACS22] Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring in the streaming

model. In Proc. 54th Annual ACM Symposium on the Theory of Computing, pages 261—-274,

2022.

[ACSS21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial

streaming via differential privacy and difference estimators. CoRR, abs/2107.14527, 2021.

[AKM22] Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks’ theorem in graph streams: a single-

pass semi-streaming algorithm for ∆-coloring. In STOC ’22: 54th Annual ACM SIGACT Sym-

posium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 234–247. ACM, 2022.

[BBMU21] Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana. Even the eas-

iest(?) graph coloring problem is not easy in streaming! In 12th Innovations in Theoretical

Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185

of LIPIcs, pages 15:1–15:19, 2021.

[BCG20] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in

streaming and other space-conscious models. In 47th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany

(Virtual Conference), volume 168 of LIPIcs, pages 11:1–11:21, 2020.

[BCHN18] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.

Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,

2018, pages 1–20. SIAM, 2018.

[BEO21] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense–

sparse trade-offs. CoRR, abs/2109.03785, 2021.

[BG18] Suman Kalyan Bera and Prantar Ghosh. Coloring in graph streams. CoRR, abs/1807.07640,

2018.

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and

Samson Zhou. Adversarial robustness of streaming algorithms through importance sam-

pling. CoRR, abs/2106.14952, 2021.

[BJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for

adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of

Database Systems, page 63–80, 2020.

[BKM20] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed col-

oring with small bandwidth. In Yuval Emek and Christian Cachin, editors, Proc. 39th ACM

Symposium on Principles of Distributed Computing, pages 243–252. ACM, 2020.

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proc. 39th

ACM Symposium on Principles of Database Systems, pages 49–62. ACM, 2020.

[CDK19] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival

streams. In Proc. 46th International Colloquium on Automata, Languages and Programming,

pages 45:1–45:14, 2019.

24

[CGS22] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for

graph streams. In Proc. 13th Conference on Innovations in Theoretical Computer Science,

pages 37:1–37:23, 2022.

[Cha82] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In John R. White and

Frances E. Allen, editors, Proceedings of the SIGPLAN ’82 Symposium on Compiler Construc-

tion, Boston, Massachusetts, USA, June 23-25, 1982, pages 98–105. ACM, 1982.

[CLN+22] Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Moshe Shechner, and Uri Stemmer. On

the robustness of countsketch to adaptive inputs. In International Conference on Machine

Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings

of Machine Learning Research, pages 4112–4140. PMLR, 2022.

[CLP18] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring algo-

rithm? In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,

CA, USA, June 25-29, 2018, pages 445–456. ACM, 2018.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci.,

18(2):143–154, 1979.

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,

and without network decomposition. In Proc. 62nd Annual IEEE Symposium on Foundations

of Computer Science, pages 1009–1020, 2021.

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversar-

ially robust streaming algorithms via differential privacy. In Advances in Neural Information

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,

NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[HKNT22] Magnus M. Halldorsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonayan. Near-optimal

distributed degree+1 coloring. In Proc. 54th Annual ACM Symposium on the Theory of Com-

puting, pages 450–463, 2022.

[HM95] Waqar Hasan and Rajeev Motwani. Coloring away communication in parallel query opti-

mization. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio, editors, VLDB’95, Pro-

ceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995,

Zurich, Switzerland, pages 239–250. Morgan Kaufmann, 1995.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive stream-

ing from oblivious streaming using the bounded storage model. In Advances in Cryptology

- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual

Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer

Science, pages 94–121. Springer, 2021.

[Kuh20] Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring. In

Shuchi Chawla, editor, Proc. 31st Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1244–1259. SIAM, 2020.

[LS86] Vahid Lotfi and Sanjiv Sarin. A graph coloring algorithm for large scale scheduling problems.

Comput. Oper. Res., 13(1):27–32, 1986.

25

[PCH+16] Yun Peng, Byron Choi, Bingsheng He, Shuigeng Zhou, Ruzhi Xu, and Xiaohui Yu. Vcolor: A

practical vertex-cut based approach for coloring large graphs. In 2016 IEEE 32nd Interna-

tional Conference on Data Engineering (ICDE), pages 97–108. IEEE, 2016.

[Sto23] Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings

of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, To appear,

2023.

[SW10] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry

breaking. In Andréa W. Richa and Rachid Guerraoui, editors, Proceedings of the 29th Annual

ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland,

July 25-28, 2010, pages 257–266. ACM, 2010.

[WZ21] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and

sliding windows via difference estimators. In Proc. 62nd Annual IEEE Symposium on Foun-

dations of Computer Science, page to appear, 2021.

A Deferred Proofs of Technical Lemmas

Lemma A.1 (Restatement of Lemma 2.1). Given a graph G with m edges and n vertices, one can find an

independent set of size ≥n2/(2m +n) in deterministic polynomial time.

Proof. We prove that we can in deterministic polynomial time find an independent set in graph G of size

≥ψ(G) :=
∑

x∈V
1

degx+1 . By Jensen’s inequality,

ψ(G) ≥
|V |2∑

x∈V (deg x +1)
=

n2

n +2m

This is better than required for this lemma.

The procedure is straightforward: let U ← V be the set of "uncovered" vertices, and I ← ; the

independent set, which we will progressively expand. While U is not empty, pick x ∈ U minimizing∑
y∈N [x]

1
degG[U](y)+1 , and remove the closed neighborhood N [x] from U , and add x to I . To prove that this

produces a set I of size ≥ φ(G), we show that every time a new vertex is picked, φ(G[U]) decreases by at

most 1. First, note that:

min
x∈U

∑

y∈N [x]

1

degG[U](y)+1
≤

1

|U |
∑

x∈U

∑

y∈N [x]

1

degG[U](y)+1
=

1

|U |
∑

z∈U

|N [z]|
degG[U](z)+1

=
|U |
|U |

= 1

Second,

φ(G[U])−φ(G[U àN [x]])=
∑

z∈U

1

degG[UàN [x]] z +1
−

∑

z∈UàN [x]

1

degG[UàN [x]] z +1

=
∑

z∈N [x]

1

degG[UàN [x]] z +1
+

∑

z∈UàN [x]

(
1

degG[U](z)+1
−

1

degG[UàN [x](z)+1

)

≤
∑

z∈U

1

degG[UàN [x]] z +1
+

∑

z∈UàN [x]

0

because degG[U](z) ≥degG[U]àN [x](z). Combining these two inequalities givesφ(G[UàN [x]]) ≥φ(G[U])−
1.

26

Lemma A.2 (Restatement of Lemma 2.2). Let X1, . . . , Xk be a series of {0,1} random variables, and c1, . . . ,ck

real numbers for which for all i ∈ k, E[Xi | X1, . . . , Xi−1] ≤ ci . Then:

Pr

[
∑

i∈[k]

Xi ≥ (1+ t)kc

]
≤ 2−t kc assuming t ≥ 3 (14)

Proof. This mostly repeats the proof of the Chernoff bound, albeit using bounds on the conditional ex-

pectations instead of independence. First, note that for any s > 1, i ∈ [k], because E[Xi | X1, . . . , Xi−1] ≤ c ,

we also have E[e s Xi | X1, . . . , Xi−1] ≤ c(e s −1)+1 ≤ ec(es−1). Then with s = ln(1+ t),

Pr[
∑

i∈[k]

Xi ≥ ck(1+ t)]= Pr[e s
∑

i∈[k] Xi ≥ e sck(1+t)]

≤ e−sck(1+t)
E

[
e s

∑
i∈[k] Xi

]
by Markov

= e−sck(1+t)
E
[
e s X1 E

[
e s X2 · · ·E[e s Xk | X1, . . . , Xk−1] · · · | X1

]]

≤ e−sck(1+t)(ec(es−1))k

=
(

e t

(1+ t)1+t

)ck

.

For all t ≥ 3, we have (1+ t) ln(1+ t) ≥ (1+ ln(2))t , so:

(
e t

(1+ t)1+t

)
= e t−(1+t) ln(1+t) ≤ e−t ln2 = 2−t ,

which implies Eq. 14.

Lemma A.3 (Restatement of Lemma 3.2). For p ≥ 8n log n, and w = (wx,j)x∈U ,j∈{0,1}k there is a function

gw : U × [p]→ {0,1}k satisfying:

|g−1
w (x, j)|

p
≤ wx,j

(
1+

1

8log n

)
, ∀ j ∈ {0,1}k

Proof. As
∑

j∈{0,1}k wx,j = 1, we can do this by directing the first
⌊

pwx,0(1+1/(8log n))
⌋

entries of gw(x, ·)
to the pattern 0; the next

⌊
pwx,1(1+1/(8log n))

⌋
entries to the pattern 1; and so on (where 0,1, . . . is an

enumeration of {0,1}k), stopping as soon as all p entries of gw(x, ·) are filled.

We now argue that gw is well-defined, i.e., that every entry gw(x, ·) is indeed filled. Examining eq. (1),

since every slack value is at most n, every nonzero value wx,j is ≥ 1/n. Recalling that p ≥ 8n log n, we

observe that for such j,

⌊
pwx,j

(
1+

1

8log n

)⌋
≥ pwx,j +

pwx,j

8log n
−1 ≥ pwx,j +

(8n log n)(1/n)

8log n
−1 = pwx,j ,

so a total of ≥
∑

j∈{0,1}k pwx,j ≥ p entries gw(x, ·) will be covered.

Finally, we provide the promised formal proof of a key claim made within our proof of Lemma 4.2.

We continue to use the notation and terminology from that proof.

Lemma A.4 (Key claim in proof of Lemma 4.2). That E[Zk ,ℓ | Z≺(k ,ℓ)] ≤ 1/∆3/2.

Proof. To express this more formally, we first apply the law of total probability, and expand the definition

of Zk ,ℓ:

E[Zk ,ℓ |Z≺(k ,ℓ)] (15)

27

= Pr

[
gℓ(Yk) = gℓ(x)∧ℓ≥

⌈
max(d (x),d (Yk))

p
∆

⌉
+1∧k ≤ D

∣∣∣ Z≺(ℓ,ℓ)

]

=
∑

v∈V à{x}

∑

c∈[∆]3/2

Pr

[
gℓ(v)= c ∧Yk = v ∧ gℓ(x) = c ∧ℓ≥

⌈
max(d (x),d (Yk))

p
∆

⌉
+1∧k ≤ D

∣∣∣ Z≺(ℓ,ℓ)

]

=
∑

v∈V à{x}

∑

c∈[∆]3/2

Pr
[
gℓ(v) = c | Eℓ,k ,v,c , Z≺(k ,ℓ)

]
Pr[Eℓ,k ,v,c | Z≺(k ,ℓ)] . (16)

The last step abbreviates the event {Yk = v∧gℓ(x) = c∧ℓ≥
⌈

max(d(x),d(Yk))p
∆

⌉
+1∧k ≤ D} =: Eℓ,k ,v,c . (In plain

terms, this event occurs if it is true that "whether {x,Yk } is stored is determined by the check gℓ(v)
?= c"

.) We will now prove that Pr
[
gℓ(v) = c | Eℓ,k ,v,c , Z≺(k ,ℓ)

]
= Pr[gℓ(v) = c] – in other words, that the event

{gℓ(v) = c} is mutually independent of the event Eℓ,k ,v,c and the random variable Z≺(k ,ℓ). This will be

done in two steps: first we will show that conditioned on the event Eℓ,k ,v,c being true, {gℓ(v) = c} and

Z≺(k ,ℓ) are independent of each other. Then we will prove {gℓ(v) = c} is independent of whether the

event Eℓ,k ,v,c holds.

If Eℓ,k ,v,c holds, then by definition we have Yk = v . Because the endpoints of the edges {x,Y2}, ...

{x,Yk } are disjoint, this ensures that x, v , and Y1 through Yk are all distinct; consequently gℓ(x), gℓ(v),

gℓ(Y1), through gℓ(Yk−1), and gℓ(v) are all mutually independent of each other, as are all the functions

g1, g2, . . . , gp
∆

. Next, because Eℓ,k ,v,c implies ℓ ≥
⌈

max(d(x),d(v))p
∆

⌉
+ 1, we observe that the value of gℓ(v)

has not been revealed to the adversary. According to the code of Algorithm 2 near Line 23, the value of

gℓ will only be used to produce colorings for vertices w that satisfy
⌈

d (w)/
p
∆

⌉
= ℓ; but d (v) is too low

for this to occur. As gℓ(v) does not affect the output of the algorithm, it also can not affect the behavior

of the adversary. Consequently, the sequence Y1, . . . ,Yℓ, and way in which the degrees of these vertices

change, must have been chosen independently of gℓ(v), conditioning on the event Eℓ,k ,v,c . Because

Z≺(k ,ℓ) is determined by the algorithm input and the values gℓ′(x), gℓ′(Yk ′) for all (k ′,ℓ′) ≺ (k ,ℓ), and we

have shown the latter are mutually independent of gℓ(v), it follows that Z≺(k ,ℓ) is independent of gℓ(v),

conditioned on the event Eℓ,k ,v,c . Thus Pr
[
gℓ(v)= c | Eℓ,k ,v,c , Z≺(k ,ℓ)

]
= Pr[gℓ(v) = c | Eℓ,k ,v,c].

We now prove that {gℓ(v) = c} is independent of the event Eℓ,k ,v,c . We can split Eℓ,k ,v,c into the inter-

section of two smaller events; that {gℓ(x)= c}, and the event Eℓ,k ,v := {Yk = v ∧∧ℓ≥
⌈

max(d(x),d(Yk))p
∆

⌉
+1∧

k ≤ D}. Since v 6= x, the values of gℓ(v) and gℓ(x) are independent; throughout the following argument,

we will condition on the event that gℓ(x) = c . The event Eℓ,k ,v depends only on Yk ,d (x),d (Yk) and D:

that is, values derived purely from the input stream the adversary creates, and not otherwise dependent

on the random bits of Algorithm 2. Let F be the event that the value of gℓ(v) is used to compute a col-

oring provided to the adversary. If, the event F is does not occur, then the input stream is independent

of gℓ(v), so Eℓ,k ,v is independent of {gℓ(v) = c}. On the other hand, if F does occur, then
⌈

d (v)/
p
∆

⌉
= ℓ

must have been true at some point, which means the condition ℓ≥
⌈

max(d(x),d(Yk))p
∆

⌉
+1 is false, and Eℓ,k ,v

does not occur. Either way, gℓ(v) is independent of Eℓ,k ,v . Since this is true no matter whether gℓ(x) = c

holds, it follows that Pr[gℓ(v) = c |Eℓ,k ,v,c] =Pr [gℓ(v)= c].

It remains to finish the upper bound on Eq. 16. As Pr [gℓ(v) = c] = 1/∆3/2,

E[Zk ,ℓ | Z≺(k ,ℓ)] =
∑

v∈V à{x}

∑

c∈[∆]3/2

Pr[gℓ(v)= c]Pr[Eℓ,k ,v,c | Z≺(k ,ℓ)]

≤
1

∆3/2

(
∑

v∈V à{x}

∑

c∈[∆]3/2

Pr[Eℓ,k ,v,c | Z≺(k ,ℓ)]

)

≤
1

∆3/2

(
∑

v∈V à{x}

∑

c∈[∆]3/2

Pr[Yk = v ∧ gℓ(x) = c | Z≺(k ,ℓ)]

)

=
1

∆3/2
.

28

	1 Introduction
	1.1 Our Contributions
	1.2 Related work

	2 Preliminaries
	3 A (Multipass) Deterministic Algorithm
	3.1 High-Level Organization
	3.2 The Logic of an Epoch: Extending a Partial Coloring
	3.3 Detailed Algorithm and Proof of Correctness
	3.4 Space and Pass Complexity
	3.5 Extensions: List Coloring and Communication Complexity

	4 Coloring Robustly Against an Adaptive Adversary
	4.1 High-Level Description and Techniques
	4.2 The Robust Algorithm and its Analysis
	4.3 A Randomness-Efficient Robust Algorithm

	A Deferred Proofs of Technical Lemmas

