Low Memory Algorithms for Online Edge Coloring

Manuel Stoeckl partmouth), joint work with Prantar Ghosh pivacs)

1. Online edge coloring

e Algorithm receives edges that together

form n vertex graph of max degree A

e \When each edge (or group of edges)
arrives, must assign a color (or colors)

Edge arrival (EA)

u 5 |
C

Vertex arrival (VA)

9
‘ /
@

One-sided bipartite vertex arrival (1VA)

) /c @

ZAN\\N

Goal: use as few colors as possible

2. State of the art for edge arrivals

No memory constraints:
. (efl -o(1)) A colors: Kulkarni, Liu,
Sah, Sawhney, Tarnawski 2022
With o (nA) bits of space:
e O(A?/s+ A) colorsin O (ns) space:
Ansari, Saneian, Zarrabi-Zadeh 2022

W-streaming:

e O(AY/s+ A)inO (ns)space,simple

graphs: Saneian, Behnezhad 2023
e O (A")inO (n)space, multigraphs:
Checkik, Mukhtar, Zhang 2023

3. Open problems

e Space usage of “intuition” algorithms

e Isonline O (A'”)-edge coloring in
edge arrival streams possible with
O (n) space, to match W-streaming?

e EA or VA space lower bounds for
BA-edge coloring when 3 > 2

4. Reducing VA to 1VA model

e Well known randomized construction
e Deterministic construction using high

rate-distance product codes

5. Intuition: unproven 2A color 1VA

algorithmon AU B

Init
e Forallb € B, 0, « random

permutation on [2A], hy, < 1, F}, < (!

Process(a € A)

o S+
e For{a,b}incidentona,inrandom
order

e While Fj, C S: add oy |hy| to F;, increment A,
e Assignrandom colorc € F; \ Sto{a,b}

e Addcto S, remove cfrom F;

6. Vertex arrival example

DN DN

bgp... gbrp...ar

7. Making a practical 1VA algorithm
for O (A) edge coloring using O (n)

space

For easier analysis:

e Use more colors

e Discard all unused colors
Multigraph:

e Alonger proof
Deterministic (exponential time)

e Acquire blocks of O (logn) colors at a

time, discard when half used
e Find colors using perfect matching

e Use fixed set of “good” permutations
Compact advice or fewer random bits:

o Use (¢,logn)-wise independent
permutation families

8. Intuition: unproven 2A color edge
arrival algorithm

Init
e Forallv e V, 0, « random
permutation on [2A], h, < 1, F}, < ()

Process({z,y})
e While F, N F, = {:
e add o, |h,]|to F, and increment h,
e add o, |h,| to F;, and increment h,

e Assignrandom colorc € F, N F) to

{7, 9}

e Remove cfrom F, and I,

9. Making a practical EA algorithm
for O (A) edge coloring using
O (n A) space

For easier analysis:

e Periodically replace each F, with fresh
set of O (v/Alogn) colors

e For randomized algorithm/static input,
will have F, N F, # () w.h.p.
Multigraph (X O (log A) more colors):
e Base design breaks on frequently
repeated edges; they are easy to detect

e Process repeat edges in sketch with

greater tolerance for repetition
Deterministic (exp time, X O (log A)
more colors)

e For certain “good” permutations,
algorithm would always work - if we
could guess the right colorin F,, N F,

e Picking arbitrary color from F, N F,
succeeds > 1/3 of the time

e Chaintogether O (log A) instances -
O (n) edges left over

Compact advice or fewer random bits:

o Use (€,/Alogn)-wise independent

permutation families

Link to paper

[m] ks [m]

"

[=]

10. Edge-arrival example
vgr

S ® a
NAVERVAY,

11.¢) ((2 — ﬁ)3n> space needed for
deterministic SA coloring, for 3 < 2

Proof:

e Hard instance: union of A lopsided
regular bipartite graphs G4, ..., G,
presented one by one

e Each time algorithm processes a graph
G,;, foreach v € B, it marks a fresh set
ngi) of colors possibly used - must be
disjoint from ngj), for g <1

o If> 5 S |is small, only very few
inputs list colorable using colors from

(7).,

e |f algorithm has too few states, there
must exist a next possible &; value

where S .S > n

o After A — 1 iterations, not enough
colors left for all possible Ga

12. Space/color tradeofts

Combining multiple vertices into one

super-vertex gives space/color tradeoft*
x This only works for multigraphs.

e O(A?/s?+ A) colors for EAin O (ns)
space

