Low Memory Algorithms for Online Edge Coloring

Manuel Stoeckl (Dartmouth), joint work with Prantar Ghosh (DIMACS)

1. Online edge coloring

- Algorithm receives edges that together form *n* vertex graph of max degree Δ
- When each edge (or group of edges) arrives, must assign a color (or colors)

Edge arrival (EA)

Vertex arrival (VA)

One-sided bipartite vertex arrival (1VA)

Goal: use as few colors as possible

2. State of the art for edge arrivals

No memory constraints:

• $\left(\frac{e}{e-1} + o(1)\right) \Delta$ colors: Kulkarni, Liu, Sah, Sawhney, Tarnawski 2022

With $o(n\Delta)$ bits of space:

• $O(\Delta^2/s + \Delta)$ colors in O(ns) space: Ansari, Saneian, Zarrabi-Zadeh 2022

W-streaming:

- $O\left(\Delta^{1.5}/s + \Delta\right)$ in $O\left(ns\right)$ space, simple graphs: Saneian, Behnezhad 2023
- $\tilde{O}(\Delta^{1.5})$ in $\tilde{O}(n)$ space, multigraphs: Checkik, Mukhtar, Zhang 2023

3. Open problems

- Space usage of "intuition" algorithms
- Is online $O\left(\Delta^{1.5}
 ight)$ -edge coloring in edge arrival streams possible with O(n) space, to match W-streaming?
- EA or VA space lower bounds for $\beta \Delta$ -edge coloring when $\beta \geq 2$

4. Reducing VA to 1VA model

- Well known randomized construction
- Deterministic construction using high rate-distance product codes

5. Intuition: unproven 2Δ color 1VA algorithm on $A \sqcup B$

Init

- For all $b \in B$, $\sigma_b \leftarrow$ random permutation on $[2\Delta]$, $h_b \leftarrow 1$, $F_b \leftarrow \emptyset$
- $\mathbf{Process}(a \in A)$
 - $S \leftarrow \emptyset$
 - For $\{a, b\}$ incident on a, in random order
 - While $F_b \subseteq S$: add $\sigma_b [h_b]$ to F_b , increment h_b
 - Assign random color $c \in F_b \setminus S$ to $\{a, b\}$
 - Add c to S, remove c from F_b

6. Vertex arrival example

7. Making a practical 1VA algorithm for $O(\Delta)$ edge coloring using O(n)space

For easier analysis:

- Use more colors
- Discard all unused colors

Multigraph:

• A longer proof

Deterministic (exponential time)

- Acquire blocks of $O(\log n)$ colors at a time, discard when half used
- Find colors using perfect matching
- Use fixed set of "good" permutations

Compact advice or fewer random bits:

• Use $(\epsilon, \log n)$ -wise independent permutation families

8. arr Init

Pro

for \bigcirc

For

Mu

Det mo

Cor

ntuition: unproven 2Δ color edge	10. E
ival algorithm	
	pr
For all $v \in V$, $\sigma_v \leftarrow random$	
permutation on $[2\Delta]$. $h_v \leftarrow 1$. $F_v \leftarrow \emptyset$	
$cess({x, y})$	
While $F_x \cap F_y = \emptyset$:	
• add $\sigma_x [h_x]$ to F_x and increment h_x	11. Ω
• add $\sigma_y [h_y]$ to F_y and increment h_y	doto
Assign random color $c \in F_x \cap F_y$ to	uele
$\{x, y\}$ Demove of term E and E	Proof
Remove c from r_x and r_y	
Making a practical EA algorithm	
$\tilde{O}(\Lambda)$ edge coloring using	
$\left(\frac{1}{\sqrt{\lambda}}\right)$ choose $1000000000000000000000000000000000000$	
$\left(n\sqrt{\Delta} \right)$ space	
oacier analycic	• H
Pariodically replace each F with fresh	re
set of $O(\sqrt{\Delta \log n})$ colors	р Г
For randomized algorithm/static input	
will have $F_r \cap F_u \neq \emptyset$ w.h.p.	S
ltigraph ($\times O$ (log Δ) more colors):	d d
Base design breaks on frequently	u If
repeated edges; they are easy to detect	• 11
Process repeat edges in sketch with	ir (
greater tolerance for repetition	
erministic (exp time, $ imes O\left(\log\Delta ight)$	• If
re colors)	r
For certain "good" permutations,	W
algorithm would always work – if we	• A [·]
could guess the right color in $F_x \cap F_y$	C
Picking arbitrary color from $F'_x \cap F'_y$	12 C
succeeds $\geq 1/3$ of the time	1Z. J
Chain together $O(\log \Delta)$ instances –	Comb
nnat advice ar forwar random bite	super
$\frac{1}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	* This or
nermitation families	
permutation families	3

lard instance: union of Δ lopsided egular bipartite graphs G_1, \ldots, G_{Δ} , resented one by one

ach time algorithm processes a graph , for each $v \in B$, it marks a fresh set ⁾ of colors possibly used – must be lisjoint from $S_v^{(j)}$, for j < i

 $\sum_{v \in B} \left| S_v^{(i)} \right|$ is small, only very few nputs list colorable using colors from

 $\checkmark v \in B$ algorithm has too few states, there nust exist a next possible G_i value where $\sum_{v \in B} \left| S_v^{(i)} \right| \ge \beta n$

After $\Delta - 1$ iterations, not enough colors left for all possible G_{Δ}

pace/color tradeoffs

pining multiple vertices into one r-vertex gives space/color tradeoff* nly works for multigraphs.

 $\tilde{O}\left(\Delta^2/s^2+\Delta\right)$ colors for EA in $\tilde{O}\left(ns\right)$ pace