## Low Memory Algorithms for Online Edge Coloring

Manuel Stoeckl (Dartmouth), joint work with Prantar Ghosh (DIMACS)

## 1. Online edge coloring

- Algorithm receives edges that together form $n$ vertex graph of max degree $\Delta$
- When each edge (or group of edges) arrives, must assign a color (or colors)


## Edge arrival (EA)



## Vertex arrival (VA)



One-sided bipartite vertex arrival (1VA)


Goal: use as few colors as possible

## 2. State of the art for edge arrivals

## No memory constraints:

- $\left(\frac{e}{e-1}+o(1)\right) \Delta$ colors: Kulkarni, Liu, Sah, Sawhney, Tarnawski 2022
With $o(n \Delta)$ bits of space:
- $O\left(\Delta^{2} / s+\Delta\right)$ colors in $\tilde{O}(n s)$ space: Ansari, Saneian, Zarrabi-Zadeh 2022


## W-streaming:

- $O\left(\Delta^{1.5} / s+\Delta\right)$ in $\tilde{O}(n s)$ space, simple graphs: Saneian, Behnezhad 2023
- $\tilde{O}\left(\Delta^{1.5}\right)$ in $\tilde{O}(n)$ space, multigraphs: Checkik, Mukhtar, Zhang 2023


## 3. Open problems

- Space usage of "intuition" algorithms
- Is online $O\left(\Delta^{1.5}\right)$-edge coloring in edge arrival streams possible with $\tilde{O}(n)$ space, to match W-streaming?
- EA or VA space lower bounds for $\beta \Delta$-edge coloring when $\beta \geq 2$


## 4. Reducing VA to IVA model

- Well known randomized construction
- Deterministic construction using high rate-distance product codes

5. Intuition: unproven $2 \Delta$ color 1VA algorithm on $A \sqcup B$
Init

- For all $b \in B, \sigma_{b} \leftarrow$ random permutation on $[2 \Delta], h_{b} \leftarrow 1, F_{b} \leftarrow \emptyset$
Process $(a \in A)$
- $S \leftarrow \emptyset$
- For $\{a, b\}$ incident on $a$, in random order
- While $F_{b} \subseteq S$ : add $\sigma_{b}\left[h_{b}\right]$ to $F_{b}$, increment $h_{b}$
- Assign random color $c \in F_{b} \backslash S$ to $\{a, b\}$
- Add $c$ to $S$, remove $c$ from $F_{b}$


## 6. Vertex arrival example


7. Making a practical IVA algorithm for $O(\Delta)$ edge coloring using $\tilde{O}(n)$ space

## For easier analysis:

- Use more colors
- Discard all unused colors


## Multigraph:

- A longer proof


## Deterministic (exponential time)

- Acquire blocks of $O(\log n)$ colors at a time, discard when half used
- Find colors using perfect matching
- Use fixed set of "good" permutations


## Compact advice or fewer random bits:

- Use $(\epsilon, \log n)$-wise independent permutation families

8. Intuition: unproven $2 \Delta$ color edge arrival algorithm

Init

- For all $v \in V, \sigma_{v} \leftarrow$ random permutation on $[2 \Delta], h_{v} \leftarrow 1, F_{v} \leftarrow \emptyset$
Process( $\{x, y\}$ )
- While $F_{x} \cap F_{y}=\emptyset$ :
- add $\sigma_{x}\left[h_{x}\right]$ to $F_{x}$ and increment $h_{x}$
- add $\sigma_{y}\left[h_{y}\right]$ to $F_{y}$ and increment $h_{y}$
- Assign random color $c \in F_{x} \cap F_{y}$ to $\{x, y\}$
- Remove $c$ from $F_{x}$ and $F_{y}$

9. Making a practical EA algorithm for $\tilde{O}(\Delta)$ edge coloring using
$\tilde{O}(n \sqrt{\Delta})$ space

## For easier analysis:

- Periodically replace each $F_{v}$ with fresh set of $O(\sqrt{\Delta \log n})$ colors
- For randomized algorithm/static input, will have $F_{x} \cap F_{y} \neq \emptyset$ w.h.p.
Multigraph ( $\times O(\log \Delta)$ more colors):
- Base design breaks on frequently repeated edges; they are easy to detect
- Process repeat edges in sketch with greater tolerance for repetition
Deterministic (exp time, $\times O(\log \Delta)$


## more colors)

- For certain "good" permutations, algorithm would always work - if we could guess the right color in $F_{x} \cap F_{y}$
- Picking arbitrary color from $F_{x} \cap F_{y}$ succeeds $\geq 1 / 3$ of the time
- Chain together $O(\log \Delta)$ instances $O(n)$ edges left over
Compact advice or fewer random bits:
- Use $(\epsilon, \sqrt{\Delta \log n})$-wise independent permutation families


## 10. Edge-arrival example


11. $\Omega\left((2-\beta)^{3} n\right)$ space needed for deterministic $\beta \Delta$ coloring, for $\beta<2$

Proof:


- Hard instance: union of $\Delta$ lopsided regular bipartite graphs $G_{1}, \ldots, G_{\Delta}$, presented one by one
- Each time algorithm processes a graph $G_{i}$, for each $v \in B$, it marks a fresh set $S_{v}^{(\imath)}$ of colors possibly used - must be disjoint from $S_{v}^{(j)}$, for $j<i$
- If $\sum_{v \in B}\left|S_{v}^{(i)}\right|$ is small, only very few inputs list colorable using colors from $\left(S_{v}^{(i)}\right)$
- If algorithm has too few states, there must exist a next possible $G_{i}$ value where $\sum_{v \in B}\left|S_{v}^{(i)}\right| \geq \beta n$
- After $\Delta-1$ iterations, not enough colors left for all possible $G_{\Delta}$


## 12. Space/color tradeoffs

## Combining multiple vertices into one

super-vertex gives space/color tradeoff ${ }^{\star}$ * This only works for multigraphs.

- $\tilde{O}\left(\Delta^{2} / s^{2}+\Delta\right)$ colors for EA in $\tilde{O}(n s)$ space

