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The Element Extraction Problem and the Cost of

Determinism and Limited Adaptivity in Linear Queries

Amit Chakrabarti* Manuel Stoeckl†

Abstract

Two widely-used computational paradigms for sublinear algorithms are using linear measurements

to perform computations on a high dimensional input and using structured queries to access a massive

input. Typically, algorithms in the former paradigm are non-adaptive whereas those in the latter are

highly adaptive. This work studies the fundamental search problem of ELEMENT-EXTRACTION in a

query model that combines both: linear measurements with bounded adaptivity.

In the ELEMENT-EXTRACTION problem, one is given a nonzero vector z = (z1, . . . ,zn) ∈ {0,1}n and

must report an index i where zi = 1. The input can be accessed using arbitrary linear functions of it with

coefficients in some ring. This problem admits an efficient nonadaptive randomized solution (through

the well known technique of ℓ0-sampling) and an efficient fully adaptive deterministic solution (through

binary search). We prove that when confined to only k rounds of adaptivity, a deterministic ELEMENT-

EXTRACTION algorithm must spend Ω(k(n1/k−1)) queries, when working in the ring of integers modulo

some fixed q. This matches the corresponding upper bound. For queries using integer arithmetic, we

prove a 2-round Ω̃(
√

n) lower bound, also tight up to polylogarithmic factors. Our proofs reduce to

classic problems in combinatorics, and take advantage of established results on the zero-sum problem as

well as recent improvements to the sunflower lemma.
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1 Introduction

Determinism versus randomization in algorithm design is a fundamental concern in computer science and

is the topic of a great many works in complexity theory. In “space-constrained” models such as communi-

cation complexity and data streaming, basic results show that derandomization can entail an exponential or

worse blow-up in cost. For instance, in the two-party communication setting, the very basic n-bit EQUALITY

problem admits a bounded-error randomized protocol with only O(1) communication (O(logn) if restricted

to private coins), whereas its deterministic communication complexity is as large as it gets, namely n+1. In

the data streaming setting, the similarly basic DISTINCT-ELEMENTS problem admits a one-pass bounded-

error randomized algorithm that uses O(log n) space to provide a (1+ε)-approximation [KNW10], whereas

a deterministic algorithm would require Ω(n) space, even if multiple passes and large approximation fac-

tors are allowed [CK16]. In this work, we explore such a price-of-determinism phenomenon in the query

complexity world, for a similarly basic search problem.

The focus of our study is a search problem that we call ELEMENT-EXTRACTION (henceforth, ELEMX),

where the input is a set Z ⊆ [n] := {1, . . . ,n}, promised to be nonempty, and the goal is to extract any element

from Z. Formally, this is a total search problem given by the relation ELEMXn ⊆ 2[n]× [n], where

ELEMXn = {(Z, i) : Z ⊆ [n], i ∈ [n], and |Z|> 0⇒ i ∈ Z} . (1)

As is often the case, the natural correspondence between sets in 2[n] and vectors in {0,1}n will be useful.

Indeed, we shall freely switch between these two viewpoints, using the notational convention that uppercase

letters denote sets and their corresponding lowercase boldface variants denote characteristic vectors. Thus,

we can also formalize ELEMX as

ELEMXn =
{
(z, i) : z = (z1, . . . ,zn) ∈ {0,1}n, i ∈ [n], and 1Tz > 0⇒ zi = 1

}
. (2)

The goal of an algorithm solving ELEMX is to produce an output i such that (Z, i) ∈ ELEMX: with certainty

in the deterministic setting, and with probability ≥ 2/3 (say) in the randomized setting. In other words,

the algorithm must produce a witness of the nonemptiness of Z. To do so, the algorithm may access Z

(equivalently, z) using linear queries, as we shall now explain.

In a Boolean decision tree model, an algorithm may only access the input vector by querying its indi-

vidual bits. In such a setting, there is not much to say about ELEMX: even randomized algorithms are easily

seen to require Ω(n) queries. But things get interesting if we allow more powerful queries: specifically,

linear ones. Let us define a linear query protocol over domain D (a D-LQP, for short) to be a query protocol

wherein each query is an evaluation of a linear form ∑n
i=1 aizi, where each ai ∈ D. The domain D should be

thought of a “reasonable” subset of a ring containing {0,1}—e.g., a finite field, or integers with bounded

absolute value—and the linear functions will be evaluated in the underlying ring. The cost of an LQP is the

number of linear form evaluations used.1 In this work we particularly care about the amount of adaptivity

in an LQP, which quantifies the extent to which each query depends on the outcomes of previous queries.

To set the stage, we recall the problem of ℓ0-SAMPLING [FIS08, CF14], from the world of sketching

and streaming algorithms. The goal of ℓ0-sampling is to sample a pair (i,xi) from a nonzero input vector

x ∈ R
n (say), so that xi 6= 0 and i is distributed nearly uniformly on the support of x. This is a fundamental

primitive, used as a low-level subroutine in a wide range of applications in streaming and other “big data”

algorithms. There are several solutions to this problem [CF14], most of which provide a linear sketching

scheme, wherein one computes y= Sx for a certain random d×n matrix S and then runs a recovery algorithm

on the low-dimensional vector y to produce the desired sample. Notice that if the input is a vector z∈ {0,1}n,

such a scheme provides a randomized LQP for ELEMXn (allowing a small probability of error). In particular,

1Note that this is somewhat lower than the number of bits needed to encode the output of the queries.
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using the optimal ℓ0-sampling sketch of Jowhari, Sağlam, and Tardos [JST11], we obtain a Z-LQP that

makes O(log n) queries, using coefficients in {0,1, . . . ,n}, and has the pleasing property of being non-

adaptive. We can also obtain a Zq-LQP that makes O(log2 n/ log q) queries;2 details in Section 6.

Turning to the deterministic setting—our main focus in this paper—it is easy to show that a non-adaptive

Z-LQP for ELEMXn must make Ω(n/ log n) queries, for basic information-theoretic reasons. For complete-

ness, we give the proof in Proposition 1.5. However, this heavy determinism penalty disappears upon

moving to general deterministic LQPs, where we can use adaptivity. Indeed, a simple binary search strategy

leads to a Z-LQP that makes O(logn) queries, using coefficients in {0,1}. We can refine this observation to

trade off the query complexity for amount of adaptivity. This brings us to our central concept.

Define a k-round LQP to be one where the queries are made in batches that we call rounds: the collection

of linear forms defining the queries in round i depend only on the results of queries made in rounds 1, . . . , i−1

(a formal definition appears in Section 2). Then, a natural generalization of the binary search strategy

provides a k-round Z-LQP for ELEMX, using coefficients in {0,1}, making at most k(⌈n1/k⌉−1) queries in

total. When we are additionally promised that 1Tz 6= 0, where addition is performed in the ring Zq, then

this algorithm also works as a Zq-LQP; details in Section 6. Notice that k-round LQPs naturally interpolate

between linear sketches at one extreme (when k = 1) and linear decision trees at the other (when k = n).

The most important message of this paper is that the above rounds-versus-queries tradeoff is asymp-

totically tight for deterministic linear query protocols for ELEMX, in several natural settings. We state our

results informally for now, with formal statements given after the necessary definitions and preliminaries.

1.1 Our Results and Techniques

We shall study D-LQPs for the domains D = Zq, the ring of integers modulo q (with q≪ n) as well as

D = Z, but with coefficients of small magnitude (at most poly(n), say). Such restrictions on the coefficients

are necessary, because allowing arbitrary integer coefficients makes it possible to recover the entire input z

with the single query ∑n
i=1 2i−1zi.

When D = Zq, for small q, solving ELEMX without the promise that 1Tz 6= 0 is hard, regardless of the

number of rounds. Intuitively, there is no cheap way to deterministically verify that a subset I ⊆ [n] indeed

contains an index i ∈ I where zi 6= 0. Defining the “cost” of an LQP to be the number of queries it makes in

the worst case (formally defined in Section 2), we obtain the following not-too-hard results.

Proposition 1.1. Every deterministic Z2-LQP for ELEMXn has cost ≥ n−1, which is optimal.

Proposition 1.2. For q≥ 3, every deterministic Zq-LQP for ELEMXn has cost ≥ n/(2q ln q).

As noted earlier, adding the promise that 1Tz 6= 0 permits a more efficient k-round deterministic algo-

rithm. For each integer q≥ 2, define ELEMX
(q)
n to be the version of ELEMXn where we are given the stronger

promise that 1Tz 6= 0 under arithmetic in Zq. Equivalently, using set notation, we are promised that |Z| 6≡ 0

(mod q). We prove the following results, using similar round-elimination arguments.

Theorem 1.3. Every deterministic k-round Z2-LQP for ELEMX
(2)
n has cost ≥ k(n1/k−1).

Theorem 1.4. Every deterministic k-round Zq-LQP for ELEMX
(q)
n has cost Ω

(
1

q1+1/k ln2 q
k(n1/k−1)

)
.

Although Theorem 1.4 subsumes Theorem 1.3 in the asymptotic sense, we find it useful to present the

former result in full, first, to lay the groundwork for our subsequent lower bound proofs. As we shall see, the

fact that Z2 is a field leads to an especially clean execution of the round elimination strategy. Note also that

a weaker form of Theorem 1.3 follows from existing work on formula size-depth tradeoffs (see Section 7);

however, the resulting proof, once fully unrolled, is considerably more complex than our direct argument.

2Throughout this paper, “log” denotes the base-2 logarithm.

2



At a high level, a lower bound proof based on round elimination works as follows. We consider a

hypothetical k-round protocol for nk-dimensional instances of some problem P that does not incur much

cost in its first round. Based on this low cost, we extract a (k− 1)-round protocol for nk−1-dimensional

instances of P by “lifting” these smaller instances to special nk-dimensional instances on which the k-round

protocol essentially “wastes” its first round. If we can carry out this argument while ensuring that the

shrinkage from nk to nk−1 is not too drastic, then a too-cheap k-round protocol will eventually give us a

0-round protocol for a nontrivial instance dimension, leading to a contradiction.

In the proofs of the above two theorems, this strategy is executed by identifying a large collection of

pairwise disjoint sets that are treated identically in the protocol’s first round. Viewing these sets as blocks of

indices within [n], we consider block-structured instances of ELEMXn and proceed to lift general instances

of ELEMXn′ into these block-structured ones. In Theorem 1.3, these blocks arise from elementary linear

algebraic considerations. In Theorem 1.4, the fact that inputs are in {0,1}n instead of Zn
q necessitates a brief

excursion into additive combinatorics.

Finally, we consider LQPs over Z, the ring of all integers, but with bounds on the magnitude of co-

efficients (which, as we noted earlier, is necessary in order to have nontrivial results). To be precise, we

consider domains of the form Z[b,c] := {a ∈ Z : b ≤ a ≤ c}. While we are unable to prove a full tradeoff

lower bound in this case, we do obtain a near-optimal result for k = 2 rounds.

Proposition 1.5. Every deterministic 1-round Z[−B,B]-LQP for ELEMXn costs Ω(n/ log(nB)).

Theorem 1.6. Every deterministic 2-round Z[−B,B]-LQP for ELEMXn costs Ω(
√

n/ log3/2(nB)).

The former result is straightforward, based on the simple observation that such an LQP can extract the

entire input z followed by basic information theoretic considerations. Incidentally, the problem of extracting

all of z using Z[0,1]-LQPs has a long history as the coin weighing problem, for which a 1-round O(n/ log n)
algorithm exists; see Section 1.2.

The significant result here is the latter. It again uses a round elimination strategy and, as before, the

bird’s-eye view is that we identify disjoint blocks of indices to engineer a suitable lifting. This time, the

blocks arise out of extremal combinatorics considerations, specifically the sunflower lemma, in its recently

strengthened form [Rao20]. Furthermore, upon carrying out this round elimination, we are left with a 1-

round LQP that solves ELEMX only under a cardinality constraint on the input set. To finish the proof, we

must demonstrate hardness even for this special case. This is not as straightforward as Proposition 1.5:

our argument to handle this hinges on the Frankl–Wilson theorem [FW81] on set systems with forbidden

intersection sizes.

Attempts to extend the above proof outline to handle more than two rounds runs into technical issues

of integer divisibility. We suspect that this is an artifact of our proof machinery and not inherent to the

problem. We conjecture that every deterministic k-round Z[−B,B]-LQP requires cost Ω̃(n1/k), suppressing

polylogarithmic factors. Indeed, we believe that much more is true, and that a communication complexity

analogue of such a tradeoff also holds. We shall take this up after a discussion of related work.

1.2 Related Work and Connections

Our work touches upon several themes with long histories of study in computer science: determinism versus

randomization, adaptivity versus non-adaptivity, sublinear algorithms, and input access through structured

queries. With these connections in mind, we recall a small number of works that are either close in spirit to

ours or shed light on some aspect of this work.

The most basic query model is the Boolean decision tree. In this setting, deterministic and randomized

complexities are polynomially related for total Boolean functions [BdW02, ABB+17], whereas arbitrarily
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large gaps are possible for search problems [LNNW95]. Parity decision trees—equivalent to our Z2-LQPs—

have been studied in several works (e.g., [ZS10, HHL18] and the references therein), usually for Boolean

functions and focusing on connections with communication complexity of XOR-composed functions. Be-

yond the Boolean—or indeed the discrete—setting lie linear decision trees, where the input is a real vector

and one can query the sign of a linear form [DL78, KLM19]. All such “decision tree” models are fully

adaptive and the vast majority of works using them do not focus on amount of adaptivity as a resource.

At the other extreme is the (nonadaptive) linear sketching model, where a high-dimensional input is

accessed through one batch of linear queries (equivalently, through a low-dimensional sketch of it produced

by a sketching matrix). This paradigm is ubiquitous in data streaming algorithms and compressed sens-

ing [Mut05, Don06, Woo14, CY20] and has connections to dimension reduction and metric embeddings.

Some recent work carries the message that linear sketching might be a complete paradigm for a large class

of data streaming algorithms [LNW14] and certain communication protocols [KMSY18, HLY19]. Most

work on linear sketching considers randomized sketches, since determinism often precludes sublinear cost.

Turning to determinism, the well-studied coin weighing problem, put in our terms, asks for a Z[0,1]-LQP

that retrieves the entire input z ∈ {0,1}n. It has long been known that (2±o(1))n/ log n nonadaptive queries

are necessary and sufficient. Special cases and variants of this problem have been studied over the years; see

[ER63] for some early history and [Bsh09, MK13] for recent history. While some of these works consider

adaptive LQPs, there is no strong rounds-vs-queries tradeoff for this problem, which is harder than ELEMX.

The body of work on round complexity under linear queries is much smaller. There is one recent work

very close to ours: Assadi, Chakrabarty, and Khanna [ACK20] studied a problem very similar to ELEMX

that they called SINGLE-ELEMENT-RECOVERY, where the input is a vector x ∈ R
n
≥0, and by applying R-

linear queries one wishes to recovery an arbitrary element from the support of x. While their query model

is much stronger than our Z-linear or Zq-linear queries, it is balanced by the R≥0-valued inputs that prevent

tricks to recover the entire input in one query. Their main theorem implies that the deterministic k-round

search algorithm making roughly k(n1/k − 1) queries in total—very similar to Algorithm 6.1—has cost

exactly matching the lower bound. Linear queries and adaptivity are also featured together in some work

on sparse recovery problems. One such problem is to find an approximately closest s-sparse vector x⋆ to

an input x, using R-linear queries to the input and r rounds of adaptivity. For this, [PW13] have proven

near optimal lower bounds of Ω(r(log n)1/r) when s = 1 and [KP19] have extended them to small s, proving

Ω(1
r
s(log n)1/r) queries are needed when logs < (log n)1/r.

A number of works consider rounds of adaptivity in query models beyond linear queries. Recent ex-

amples include works on maximizing submodular functions through adaptive oracle queries [BS18]; on

adaptivity hierarchy theorems in property testing [CG18]; on identifying biased coins through pairwise

comparisons or in multi-armed bandit settings [AAAK17]; and on finding approximately maximum bipar-

tite matchings through demand queries and OR-queries [Nis21]. Other works have studied adaptivity in

the massive parallel communication/computation (MPC) model [BKS17] and in various graph query mod-

els [AB19, BHPSR+20].

A rich body of work on cost/adaptivity tradeoffs is found in communication complexity, where adap-

tivity manifests as rounds of interaction. An early work [NW93] gave exponential separations between

k and k + 1 rounds for all k and introduced a round elimination paradigm that remains ubiquitous to this

day. This work also explains how an earlier result [KW90] connecting circuit and communication com-

plexities can be used to relate bounded-round communication complexity for a specific problem to the size

of bounded-depth, unbounded fan-in formulas. More work has been spurred by applications of bounded-

round communication lower bounds in data structures, where they provide lower bounds in the cell-probe

model [MNSW98, Sen03, CR04, PT07, LPY16]; and in streaming algorithms, where they translate nat-

urally to tradeoffs between the number of passes made over the input stream and the working memory

required [GM09, ER14, GO16, CCM16, CW16]. In much of this body of work, round elimination is per-
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formed using information theoretic arguments that naturally provide lower bounds against randomized al-

gorithms.

In contrast, it is rare to see deterministic tradeoffs where corresponding randomized ones do not hold

because randomization makes the problem “too easy.” This is exactly the situation with ELEMX, as shown

by this work in the context of the randomized upper bounds (Section 6) via ℓ0-sampling [JST11]. In light of

the preceding discussion, our instantiations of round elimination must use techniques beyond Shannon-style

information theory. They indeed do. Our techniques therefore have the potential for further use in separating

determinism from randomization in this fine-grained (round aware) sense.

Our query complexity results on ELEMX suggest a tantalizing communication complexity analogue.

Let UR
⊂
n denote3 the communication complexity problem where Alice and Bob receive sets X ,Y ⊆ [n]

respectively with the promise that Y ⊂ X , and their goal is to produce an element in X rY . Clearly, a k-

round query protocol for ELEMX making q queries, with each answer lying in a set of size M, provides a

k-round communication protocol for UR
⊂ using at most q logM bits. Therefore, our results here would be

subsumed, in an asymptotic sense, if one could resolve the following conjecture positively.

Conjecture 1.7. Every deterministic k-round communication protocol for UR
⊂ costs Ω̃(n1/k) bits, suppress-

ing polylogarithmic factors.

We find the above conjecture compelling because it would demonstrate a new phenomenon in commu-

nication complexity, where a problem is easy for one-round randomized and for interactive deterministic

protocols, but exhibits a nontrivial tradeoff for bounded-round deterministic ones.

In passing, we note that the UR
⊂ problem was introduced in [KNP+17] where its randomized com-

munication complexity was studied. The randomized lower bound was subsequently used by Nelson and

Yu [NY19] to prove the optimality of Ahn, Guha, and McGregor’s graph sketching algorithm for graph

connectivity [AGM12]. An outstanding open question about the latter problem (viewed as a communication

problem where n players, each holding a vertex neighborhood, talk to a coordinator who determines whether

the graph is connected) is whether it admits a deterministic algorithm with sublinear communication. A bet-

ter understanding of UR
⊂ in the deterministic setting could be key to addressing this question.

There are also two problems similar to UR
⊂ for which lower bounds have already been proven. The

universal relation problem UR gives Alice and Bob unequal sets X ,Y ⊆ [n] and asks them to produce an

element i ∈ (X rY )∪ (Y rX). This has deterministic communication complexity ≥ n+ 1 [TZ97]. The

Karchmer-Wigderson game for PARITYn is the problem UR with the additional constraints that |X | be even

and |Y | be odd; existing circuit complexity results [Has86, Ros15] imply, as briefly explained in Section 7,

that k-round deterministic communication protocols for this require Ω(k(n1/k−1)) bits of communication.

2 Preliminaries

Throughout the paper, we shall freely switch between the equivalent viewpoints of sets in 2[n] and vec-

tors in {0,1}n, using the notational convention that when an uppercase letter (e.g., S,Z) denotes a set, the

corresponding lowercase boldface letter (e.g., s,z) denotes the characteristic vector of that set and vice versa.

2.1 Various Definitions

The search problem ELEMXn was already formally defined in eq. (1). We shall also work with special cases

of this problem, where the cardinality of the input set is further restricted in some way. These are formalized

3The notation, due to Nelson and Yu [NY19], is to be read as “universal relation with a subset constraint.”
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as follows: we define

ELEMX
(q)
n = {(Z, i) : Z ⊆ [n], i ∈ [n], and |Z| 6≡ 0 (mod q)⇒ i ∈ Z} ; (3)

ELEMX
(q,h)
n = {(Z, i) : Z ⊆ [n], i ∈ [n], and |Z| ≡ h (mod q)⇒ i ∈ Z} ; (4)

ELEMX
1/4
n = {(Z, i) : Z ⊆ [n], i ∈ [n], and |Z|= n/4⇒ i ∈ Z} . (5)

Definition 2.1 (Protocol). Let f ⊆{0,1}n×O be a search problem with input space {0,1}n and output space

O . A deterministic k-round D-linear query protocol (D-LQP), Π, on this input space is a rooted tree of depth

k where each internal node v is labeled with a matrix Av ∈ Ddv×n; each leaf node with an output oλ ∈ O;

and the edges from a node v to its children are labeled with the elements of Mv := {Avz : z ∈ {0,1}n}
bijectively. The quantity dv of node v is the cost of the node, sometimes also denoted cost(v). Given an

input z ∈ {0,1}n, the measurement at internal node v is Avz. The transcript of Π on z —denoted Π(z)—is

the unique root-to-leaf path obtained by walking along the edges determined by these measurements; the jth

measurement is the label of the jth edge on this path; and the output is the label oℓ of the leaf ℓ := ℓ(Π(z))
reached by this path. We say that Π solves f if (z,oℓ) ∈ f for every input z.

Since this paper is largely focused on deterministic complexity, henceforth we shall assume that all

LQPs are deterministic unless stated otherwise.

Definition 2.2 (Cost). The query cost of a protocol Π is:

cost(Π) := max
z∈{0,1}n

cost(Π;z) , where cost(Π;z) := ∑
v internal node on Π(z)

dv ,

which is, informally, the number of linear queries performed when Π executes on z. While we do not focus

on bit complexity in this paper, it is worth noting that to make an information-theoretically fair comparison

between different domains, one should consider the number of bits returned in response to all the queries.

This number may be larger than cost(Π), though only by an O(logn) factor for D=Z[−B,B] with B= poly(n),
and not at all for D = Z2.

Definition 2.3 (Complexity). The D-linear query complexity and k-round D-linear query complexity of a

search problem f are defined, respectively, to be

LQD( f ) = min{cost(Π) : Π is a D-LQP that solves f} ;

LQk
D( f ) = min{cost(Π) : Π is a k-round D-LQP that solves f} .

2.2 Useful Results from Combinatorics

In the course of this paper, we will use several important theorems from combinatorics. For results on Zq-

LQPs (proved in Section 4), we use the following result of van Emde Boas and Kruyswijk [vEBK69] on

zero sumsets, slightly reworded to use modern notation.

Theorem 2.4 ([vEBK69]). Let G be a finite abelian group with exponent4 exp(G) and order |G|. Let s(G)
be the minimal positive integer t for which any sequence of t elements from G has a nonempty subsequence

which sums to zero. Then s(G)≤ exp(G)(1+ ln
|G|

exp(G)).

A stronger result that s(G) = 1+ r(q− 1) applies when G = Z
r
q and q is a prime power [Ols69]; it is

conjectured that the prime-power constraint is unnecessary [GG06, conjecture 3.5].

When working over Z (in Section 5), we use the well-known notion of a sunflower and the following

recent result of Rao [Rao20], which refines the noted result of Alweiss, Lovett, Wu, and Zhang [ALWZ20]

4The exponent of a group is the least common multiple of the orders of its elements.
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that improved the classic sunflower lemma of Erdős and Rado [ER60]. The note [BCW20] further improves

Rao’s bound by replacing the log(pt) factor with log t, but this will not affect our proof. Tao [Tao20] gives

an alternative presentation of Rao’s result which may be simpler to follow.

In a different part of our argument, we will need a well known theorem of Frankl and Wilson [FW81].

Theorem 2.5 (Rao). There is a universal constant c1 > 1 such that every family of more than (c1 p log(pt))t

sets, each of cardinality t, must contain a p-sunflower, defined as a family of p distinct sets whose pairwise

intersections are identical.

Theorem 2.6 (Frankl–Wilson). Let m(n,k, l) be the largest size of a collection F of subsets of
([n]

k

)
for

which no two elements F,F ′ ∈F have intersection size l. Then, if k− l is a prime power:

m(n,k, l)≤
(

n

k− l−1

)
, if k ≥ 2l +1;

m(n,k, l)≤
(

n

l

)(
2k− l−1

k

)/(2k− l−1

l

)
, if k ≤ 2l +1 .

2.3 Our Round Elimination Framework

We now describe a framework for our round elimination arguments. For this section, we shall work over a

general ring (with unity), R, and “LQP” will mean a D-LQP where D⊆ R. Fix this ring R.

Definition 2.7 (Homomorphism and shadowing). A protocol homomorphism is a map ϕ from a protocol ϒ

to a protocol Π such that (i) for any two nodes u,v in ϕ , the node ϕ(u) is a child of ϕ(v) iff u is a child of v,

and (ii) ϕ maps leaves of ϒ to leaves of Π. We say that ϕ is cost-preserving for each internal node v of ϒ,

cost(v) = cost(ϕ(v)). We say that ϒ shadows Π through ϕ if ϕ is injective, cost-preserving, and maps the

root of ϒ to a child of the root of Π. Notice that when this is the case, ϒ is one round shorter than Π.

Suppose we have an LQP Π that operates on inputs in {0,1}n and produces outputs in [n]. Further,

suppose S1, . . . ,Sm ⊆ [n] is a collection of pairwise disjoint nonempty sets. We then define a certain LQP

Π(S1,...,Sm) operating on inputs in {0,1}m and producing outputs in [m]. To aid intuition, we describe the

construction procedurally in Algorithm 2.1.

Algorithm 2.1 Outline of protocol Π(S1,...,Sm)

1: Lift our input W ⊆ [m] to Z :=
⋃

i∈W Si ⊆ [n] (this step is only conceptual).

2: Mimic Π by simulating the queries it would have made to its input Z. Emulate each such query by

making the corresponding query to our own input W . This is indeed possible using linear queries to W .

3: Suppose Π wants to output h. If h ∈ Si, then output that index i (which must be unique); otherwise,

output an arbitrary index.

To define Π′ := Π(S1,...,Sm) formally, we first define the lifting matrix

L = [s1 s2 · · · sm] ∈ Rn×m , (6)

whose entries lie in {0,1} and which maps the input space of Π′ to the input space of Π according to line 1,

thanks to the pairwise disjointness of the sets Si. At a given node v of Π, labeled with Av ∈ Z
dv×n
q , the

simulation in line 2 would retrieve the measurement Avz = AvLw. The protocol Π′ can get the same result

by making the query AvL ∈ Z
dv×m
q .

Thus, the protocol tree for Π′ is formed as follows. Prepare a copy of Π and let ϕ : Π′ → Π be the

natural bijection between their nodes. Label each internal node v of Π′ with Av := Aϕ(v)L. Copy over all

7



edge labels from Π to Π′. For each leaf ℓ of Π′, if oϕ(ℓ) ∈ Si, then assign label oℓ := i. If no such i exists,

assign oℓ := 1 (say). This labeling is well defined because of the pairwise disjointness of the sets Si.

In the sequel, to perform round elimination, we shall use the construction of Π′ in a special way that we

record in the lemma below. We also record a definition that will be relevant when invoking the lemma.

Lemma 2.8. Suppose that Π correctly solves ELEMXn on inputs in Z ⊆ {0,1}n. Let S1, . . . ,Sm ⊆ [n]
be pairwise disjoint and let L be defined by eq. (6). Let ρ be the root node of Π and, for r ∈ Rdρ , let

Wr := {w ∈ {0,1}m : Lw ∈ Z and AρLw = r}. Then, there is a protocol ϒ that shadows Π and correctly

solves ELEMXm on each input in Wr.

Proof. Using the above setup and terminology, construct Π′ := Π(S1,...,Sm) as in Algorithm 2.1. The given

conditions imply that on all inputs in Wr, the first measurement of Π′ is always r and thus leads an execution

of Π′ to a particular child, u, of its root node. Thus, we can shrink Π′ to the subprotocol ϒ rooted at u.

Notice that the bijection ϕ is a cost-preserving protocol homomorphism and so ϒ shadows Π through ϕ |ϒ.

By construction, ϒ on input w ∈ Wr simulates Π on z := Lw = ∑i∈W si, an input on which Π correctly

solves ELEMXn. Therefore, if Π outputs h, then h ∈ Z =
⋃

i∈W Si. By the disjointness guarantee, there exists

a unique i ∈W for which h ∈ Si. As ϒ reports precisely this i, it correctly solves ELEMXm on w.

Definition 2.9 (Uniform family). Fix a matrix A ∈ Rd×n. An A-uniform family of size m is a collection of m

pairwise disjoint sets S1, . . . ,Sm ⊆ [n] such that As1 = · · ·= Asm = r, for some vector r ∈ Rd .

3 Linear Queries Modulo 2

We begin our study of the ELEMENT-EXTRACTION problem by considering Z2-linear queries. As noted in

Section 1.1, we shall later generalize the results to Zq, but we feel it is worth seeing our framework in action

in the especially clean setting of Z2. We begin by showing that the additional promise of odd cardinality on

the input set Z is crucial, or else there is no interesting rounds-vs-queries tradeoff to be had.

Proposition 3.1 (Restatement of Proposition 1.1). LQZ2
(ELEMXn) = n−1.

Proof. The upper bound is achieved by the trivial 1-round LQP (i.e., a sketch) that queries all but one of the

individual bits of the input.

Now assume to the contrary that there is a Z2-LQP Π with cost(Π) = d ≤ n−2 that solves ELEMXn. Let

A ∈ Z
d×n
2 be the matrix whose rows represent all queries along the path Π(0). Then dim kerA≥ n−d ≥ 2,

whence there exist distinct nonzero vectors y,z ∈ Z
n
2 such that Ay = Az = 0. Setting x = y+ z, we also have

Ax = 0. Thus, the three nonzero inputs x,y,z lead to the same leaf, namely ℓ(Π(0)), and produce the same

output i, say. By the correctness of Π, we have xi = yi = zi = 1, which contradicts x = y+ z.

Accordingly, for the rest of this section, we focus on the problem ELEMX
(2)
n , as defined in eq. (3).

We shall prove Theorem 1.3 using a round elimination technique. As discussed in Section 2, this round

elimination will be enabled by identifying a certain A-uniform family. The next lemma, establishing a

useful fact about matrices over Z2, will provide us this family.

Lemma 3.2. Every matrix A ∈ Z
d×n
2 , admits an A-uniform family S1, . . . ,Sm of size m ≥ ⌈n/(d +1)⌉ such

that each cardinality |Si| is odd.

Proof. Let b1, . . . ,bn be the (nonzero) column vectors of the matrix

B :=

[
A

1T

]
∈ Z

(d+1)×n

2
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formed by appending the all-ones row to A. For each Q ⊆ [n], let BQ be the collection of column vectors

{bi : i ∈ Q} and let 〈BQ〉 be the linear subspace of Zd+1
2 spanned by the vectors in BQ.

Partition [n] into nonempty disjoint sets T1, . . . ,Tm iteratively, as follows. For each i, let Ti be a maximal

subset of [n]r
⋃i−1

j=1 Tj such that the vectors in BTi
are linearly independent. Since these vectors live in Z

d+1
2 ,

it follows that |Ti| ≤ d +1. We stop when
⋃m

j=1 Tm = [n], implying m≥ ⌈n/(d +1)⌉.
We claim that, for each i ∈ {2, . . . ,m}, we have 〈BTi−1

〉 ⊇ 〈BTi
〉. Indeed, if there exists an element

x ∈ 〈BTi
〉r 〈BTi−1

〉, then there is a set Q ⊆ Ti for which x = ∑h∈Q b j. Since 〈BTi−1
〉 is closed under linear

combinations and does not contain x, there exists h ∈ Q with bh /∈ 〈BTi−1
〉. By construction, h /∈ ⋃i−2

j=1 Tj, so

h was not included in Ti−1 despite being available. This contradicts the maximality of Ti−1.

Let k be an index in Tm. Then bk ∈ 〈BTm
〉 ⊆ 〈BTm−1

〉 ⊆ · · · ⊆ 〈BT1
〉, so there must exist subsets S1, . . . ,Sm

of T1, . . . ,Tm for which Bsi = bk. The sets {Si}m
i=1 are pairwise disjoint because the sets {Ti}m

i=1 are. Let r be

the first d coordinates of bk; then for all i ∈ [m], Asi = r. Therefore, {Si}m
i=1 is A-uniform. Finally, since the

last coordinate of bk is 1 and the last row of B is 1T, for each i ∈ [m], 1Tsi = 1, so |Si| is odd.

Lemma 3.3 (Round elimination lemma). Let Π be a deterministic k-round Z2-LQP for ELEMX
(2)
n , where

k ≥ 1. Then there exists a deterministic (k−1)-round Z2-LQP ϒ for ELEMX
(2)
m , such that

(3.3.1) ϒ shadows Π through a (cost-preserving, injective) protocol homomorphism ϕϒ : ϒ→Π;

(3.3.2) m≥ ⌈n/(d +1)⌉, where d is the cost of the root of Π.

Proof. Let A ∈ Z
d×n
2 be the label of the root of Π. Let S1, . . . ,Sm be an A-uniform family of size m ≥

⌈n/(d +1)⌉ with each |Si| odd, as guaranteed by Lemma 3.2. Let the lifting matrix L be as given by eq. (6)

and let r = As1. We know that Π correctly solves ELEMX
(2)
n on inputs in Z := {Z ⊆ [n] : |Z| odd}. Invoking

Lemma 2.8, we obtain a (k−1)-round Z2-LQP ϒ that shadows Π as required.

It remains to show that ϒ solves ELEMX
(2)
m . The guarantee of Lemma 2.8 is that ϒ correctly solves

ELEMXm on the input set Wr defined there. Thus, it suffices to show that if an input W ⊆ [m] satisfies the

promise of ELEMX
(2)
m —i.e., |W | is odd—then W ∈Wr. We reason as follows:

|W | odd =⇒ |Lw|=
∣∣∣∣∣∑
i∈W

si

∣∣∣∣∣≡ 1 (mod 2) ⊳ each |Si| is odd

=⇒ Lw ∈Z ; ⊳ definition of Z

and

|W | odd =⇒ ALw = A ∑
i∈W

si = |W | ·As1 = |W | · r = r . ⊳ definition of A-uniformity

This completes the proof, by definition of Wr.

The next step of the proof is to repeatedly invoke the above round elimination lemma and carefully

control parameters. To perform a sharp analysis, we introduce the following concept.

Definition 3.4. A division sequence for n is a finite sequence of positive integers d1 . . .d j for which

⌈
· · ·
⌈⌈

n · 1

d1 +1

⌉
1

d1 +1

⌉
· · · 1

d j +1

⌉
= 1 . (7)

Lemma 3.5. Let d1, . . . ,d j be a division sequence for n minimizing ∑
j
h=1 dh. Then

jn1/ j− j ≤
j

∑
h=1

dh ≤ j⌈n1/ j⌉− j .
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Proof. For the upper bound, let d1 = . . .= d j = ⌈n1/ j⌉−1. For the lower bound, remove the ceiling opera-

tions in eq. (7) to get

n

∏
j
h=1(dh +1)

≤ 1 , which implies n1/ j ≤
(

j

∏
h=1

(dh +1)

)1/ j

.

By the AM-GM inequality,

j

∑
h=1

dh = j

(
1

j

j

∑
h=1

(dh +1)−1

)
≥ j



(

j

∏
h=1

(dh +1)

)1/ j

−1


≥ j(n1/ j−1) .

This brings us to the main result of this section: a rounds-vs-queries tradeoff.

Theorem 3.6 (Restatement of Theorem 1.3). LQk
Z2
(ELEMX

(2)
n )≥ k(n1/k−1).

Proof. Suppose that Π is a deterministic k-round Z2-LQP for ELEMX
(2)
n . Repeatedly applying Lemma 3.3,

we obtain a sequence of protocols Π = Π1,Π2, . . . ,Π j+1, which solve ELEMX
(2) on progressively smaller

input sizes, until Π j+1 is a degenerate depth-0 protocol (in which no queries occur).

Let di be the cost of the root ρi of Πi, for 1≤ i≤ j. As Property (3.3.1) gives protocol homomorphisms

ϕΠi+1
: Πi+1→ Πi, we find the the roots of each Πi correspond to nodes ui = (ϕΠ2

◦ · · · ◦ϕΠi
)(ρi) in Π. In

fact, the vertices u1,u1, . . . ,u j+1 form a path from the root ρ = u1 of Π to the leaf u j+1. The inputs of Π j+1

lift to inputs of Π which reach u j+1. Lower bounding the query cost of Π using this branch gives

cost(Π)≥
j

∑
i=1

cost(ui) =
j

∑
i=1

di . (8)

Using property (3.3.2) repeatedly, Π j+1 must solve ELEMX
(2)
m , for some integer

m≥
⌈
· · ·
⌈⌈

n · 1

d1 +1

⌉
1

d2 +1

⌉
· · · 1

d j +1

⌉
.

However, as Π j+1 solves ELEMX
(2)
m without performing any queries, there must be a fixed index which is a

valid output for all inputs Z ∈ 2[m] of odd size. This is only possible when m = 1; for any larger m, the inputs

Z = {1} and Z′ = {2} must produce different outputs.

Therefore, the integers d1, . . . ,d j form a division sequence for n. Applying Lemma 3.5 to eq. (8),

cost(Π)≥
j

∑
i=1

di ≥ jn1/ j− j≥ k(n1/k−1) ,

where the last inequality follows from the fact that d
dz

[
z(n1/z−1)

]
≤ 0 for all z≥ 0.

4 Linear Queries Modulo q

First, we use Theorem 2.4 to show that ELEMXn is hard for Zq-LQPs.

Proposition 4.1 (Restatement of Proposition 1.2). For every q≥ 3, we have LQZq
(ELEMXn)≥ n/(2q ln q).
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Proof. This is proven with the same strategy as for Proposition 1.1. Assume for sake of contradiction that

cost(Π)≤ n
2q ln q

. Let ν be the leaf ℓ(Π(0)). Let A ∈ Zd×n
q be the matrix containing all queries along the path

from the root of Π to ν .

By Theorem 2.4, since the group Z
d
q has order qd , and exponent q, any sequence of D≤ q

(
1+ ln(qd

q
)
)

elements in Z
d
q has a nontrivial subsequence summing to 0. As q≥ 3, dq ln q≥D. Thus, since n≥ 2dq ln q,

picking disjoint subsets I and J of sizes dq lnq each, and applying the theorem implies there exist disjoint

nonempty subsets Z1 and Z2 of [n] for which the corresponding columns of A sum to 0. In other words, Π

reaches the same leaf given z1 and z2, but the leaf cannot be assigned an output consistent with both.

A similar strategy proves a lemma analogous to Lemma 3.2:

Lemma 4.2. Every matrix A ∈ Z
d×n
q , admits an A-uniform family S1, . . . ,Sm where

(4.2.1) m≥ n

(d +1)q lnq
−1, and

(4.2.2) each cardinality |Si| ≡ −1 (mod q).

Proof. To be able to enforce constraints on the values |Si|, we define B :=
[
1 | AT

]T ∈ Z
(d+1)×n
q , and let

b1, . . . ,bn be its column vectors. We partition the columns of the matrix B into disjoint subsets D1, . . . ,Dk

of [n] by the following iterative procedure. In the procedure, let P be the set of indices of [n] not yet chosen.

Each set Di starts out as ∅; then beginning with i = 1, each set Di is expanded by picking an index j from P

for which no subset H ⊆ (Di∪{ j}) has the property that ∑h∈H bh = 0; adding j to Di and removing j from

P; until no more such indices can be found. When Di is done, start filling Di+1, etc.

When q = 2, each Di corresponds to a basis of a subspace of Z
d+1
2 , so |Di| ≤ d + 1 < (d + 1)2ln 2.

For q ≥ 3, we apply Theorem 2.4, using the fact that the group Z
d+1
q has order qd+1 and exponent q.

The maximum possible size of each set Di is then ≤ q
(

1+ ln(qd+1

q
)
)
− 1. The upper bound (d + 1)q ln q

also holds here. Consequently, the number k of sets formed is ≥ n
(d+1)q lnq

. Pick some t ∈ Dk; for any

i < k, since t was not picked when Di was constructed, it must be the case that there is a subset Si ⊆ Di

for which ∑h∈Si
bh + bt = 0. This implies Bsi = ∑h∈Si

bh = −bt . Since the first row of B is 1, we have

|Si| ≡ ∑h∈Si
1 ≡ −1 (mod q), so all the sets Si have size −1 (mod q). Let r be the last d entries of −bt ;

then for all i, Bsi = r. There are m = k−1≥ n
(d+1)q lnq

−1 sets in total.

Compared to ELEMX
(2), there is a slight weakening of the main round elimination lemma, which is a

direct consequence of the weakened Lemma 4.2. Instead of directly lower bounding the cost of ELEMX
(q)
n ,

we prove separate lower bounds for each ELEMX
(q,h)
n , for all h ∈ {1, . . . ,q− 1}, and take their maximum.

The search problem ELEMX
(q,h)
n is ELEMXn with the additional promise that the input set Z has size ≡ h

(mod q).

Lemma 4.3 (Round elimination lemma). Let Π be a k-round Zq-LQP for ELEMX
(q,h)
n , where k ≥ 1 and

h ∈ {1, . . . ,q−1}. Then there exists a (k−1)-round Zq-LQP ϒ for ELEMX
(q,−h)
m , such that

(4.3.1) ϒ shadows Π through a protocol homomorphism ϕϒ : ϒ→Π;

(4.3.2) m≥ n

(d +1)q lnq
−1, where d is the cost of the root of Π.

Proof. Let A ∈ Z
d×n
q be the label of the root of Π. Lemma 4.2 guarantees that there exists an A-uniform

family of size m, where m satisfies property (4.3.2), and As1 = . . . = Asm = x, and |S1| ≡ . . . ≡ |Sm| ≡ −1

(mod q). Let L be the lifting matrix from eq. (6), and r = −hx. Applying Lemma 2.8 to Π, L and r, we
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obtain a (k− 1)-round Zq-LQP ϒ that shadows Π, and solves ELEMXm on all inputs W ⊆ [m] for which

ALw = r and |Lw| ≡ h (mod q). If W fulfills the promise of ELEMX
(q,−h)
n , that |W | ≡ −h (mod q), then:

|Lw|=
∣∣∣∣∣
⋃

i∈W

Si

∣∣∣∣∣= ∑
i∈W

|Si|= |W | · (−1) = h (mod q) ,

ALw = ∑
i∈W

Asi = |W |x =−hx = r ,

which proves that ϒ is correct on W .

This brings us to the main result of this section, which essentially generalizes the modulo-2 result from

the previous section.

Theorem 4.4 (Restatement of Theorem 1.4). For each q≥ 2, we have

LQk
Zq
(ELEMX

(q)
n )≥ 1

3.67q1+1/k ln2 q
k(n1/k−1) .

Proof. Suppose that Π is a deterministic Zq-LQP for ELEMX
(q,h)
n . Repeatedly applying Lemma 4.3, we

construct a sequence of protocols Π= Π1,Π2, . . . ,Π j+1, which respectively solve ELEMX
(q,h), ELEMX

(q,−h)
n ,

ELEMX
(q,h), . . . on progressively smaller input sizes, until Π j+1 is a degenerate depth-0 protocol (in which

no queries occur), for ELEMX
(q,(−1) jh)
n . As in Section 3, the roots ρi of the protocols Πi, 1≤ i≤ j, which have

cost di, correspond to a branch of Π formed by corresponding nodes ui and ending at a leaf corresponding

to the root of Π j+1. Then

cost(Π)≥
j

∑
i=1

cost(ui) =
j

∑
i=1

di . (9)

Let δi := (di +1)q lnq. By Lemma 4.3, Πi solves ELEMX
(q,(−1)i−1h)
mi , where m1 = n, and:

mi+1 ≥
mi

(di +1)q ln q
−1 =

mi−δi

δi

. (10)

As Π j+1 solves ELEMX
(q,(−1) jh)
mi without any queries, the problem must be trivial, necessitating m j+1 ≤ q.

Combining eq. (10) for i between 1 and j and rearranging:

q≥ n−∑
j
i=1 ∏i

ℓ=1 δℓ

∏
j
ℓ=1 δℓ

=⇒ n≤ q

j

∏
ℓ=1

δℓ+
j

∑
i=1

i

∏
ℓ=1

δℓ ≤ (q+ j)
j

∏
ℓ=1

δℓ .

Further rearrangement lets us use AM-GM and an inequality derived from (q+ j)q j ≤ (q+1) jq:

(
1

j

j

∑
i=1

δi

)
≥
(

j

∏
i=1

δi

)1/ j

≥
(

n

q+ j

)1/ j

≥ q

q+1

(
n

q

)1/ j

. (11)

We can now lower bound the query cost of Π:

cost(Π)≥
j

∑
i=1

(di +1)− j =
1

q lnq

j

∑
i=1

δi− j ⊳ by eq. (9)

≥ j

(
1

(q+1) lnq

(
n

q

)1/ j

−1

)
⊳ by eq. (11)

≥ k

(
1

(q+1) lnq

(
n

q

)1/k

−1

)
. ⊳ since

d

ds
[s(r1/s−1)]≤ 0 (12)
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This lower bound becomes negative for sufficiently large k. To obtain a bound that remains positive for

all k, we combine it with an unconditional lower bound. First, we note that eq. (12) also applies to protocols

solving ELEMX
(q)
n , since ELEMX

(q,h)
n was an easier case. For ELEMX

(q)
n , the set of possible transcripts of any

protocol Ψ forms a q-ary prefix code of maximum length d. If qd < n, then by the pigeonhole principle

Ψ must treat identically some pair of {1},{2}, . . . ,{n}, which is a contradiction; thus cost(Π) ≥ lnn/ ln q.

Combining this lower bound with eq. (12) and applying Lemma 8.1, we obtain

cost(Π)≥max

{
lnn

lnq
, k

(
1

q1/k(q+1) lnq
n1/k−1

)}
≥ k(n1/k−1)

q1/k(q+1)(ln q+1) lnq
≥ k(n1/k−1)

3.67q1+1/k ln2 q
.

5 Linear Queries Over the Integers

For Z-LQPs, our main result is a 2-round lower bound for ELEMXn. We require a careful accounting of the

query cost of a protocol, to adjust for the fact that the (bit) size of the query results depends on the maximum

entry value in a given query matrix. This motivates the following definition and observation.

Definition 5.1. A Z-LQP is said to be M-bounded if each linear measurement can take at most M distinct

values. In particular, if the inputs to a Z[−B,B]-LQP Π lie in {0,1}n, then Π is (Bn+1)-bounded.

Recall the problem ELEMX
1/4
n defined in eq. (5). For n divisible by 4, this is simply ELEMXn under the

additional promise that |Z| = n/4. We first prove a 1-round lower bound for this problem, under a slight

additional assumption on n.

Lemma 5.2. Let n = 4r where r is a prime power. If Π is an M-bounded one-round protocol for ELEMX
1/4
n ,

cost(Π)≥ 0.14
n

log M
.

Proof. Let d = cost(Π) and let A ∈ Z
d×n be the query performed by Π. We first consider what Π does on

inputs of cardinality n/2, even though such inputs lie outside the promise region of ELEMX
1/4
n . Soon, we

shall see how this helps.

Since Π is M-bounded, the mapping z 7→ Az from domain
( [n]

n/2

)
to Z

d has no more than Md possible

output values. By the pigeonhole principle, there exists a vector w ∈ Z
d for which

Fw :=

{
z ∈
(
[n]

n/2

)
: Az = w

}
has |Fw| ≥

(
n

n/2

)
M−d .

If there exist two distinct vectors x,y∈Fw such that |x∩y|= n/4, then we can construct two disjoint vectors

which Π can not distinguish, and thus cannot give a correct answer to ELEMX
1/4
m in both cases. Specifically,

|xry|= |yrx|= n/4 and

A(xry) = Ax−A(x∩y) = w−A(x∩y) = Ay−A(x∩y) = A(yrx) .

By Theorem 2.6, if there does not exist such a pair x,y, then we have an upper bound on |F |, and can derive

(
n

n/2

)
M−d ≤ |F | ≤

(
n

n/4−1

)
.

Therefore,
(

n
n/2

)
M−d ≤

(
n

n/4

)
and we obtain

d ≥
log
(

n
n/2

)
− log

(
n

n/4

)

logM
≥ log

(
4
2

)
− log

(
4
1

)

4

n

log M
≥ 0.14

n

log M
.
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It should be noted that without the promise that |Z| = n/4, a one-round lower bound would follow

very easily. By a standard “decoding” argument, a one-round protocol for ELEMX can be used to recover

the entire unknown input z. For completeness, we give the easy proof below. The reason we needed the

much more complicated argument in Lemma 5.2 above is that the promise in ELEMX
1/4
n prevents us from

performing such a decoding.

Proposition 5.3 (Essentially a restatement of Proposition 1.5). If Π is an M-bounded one-round protocol

for ELEMXn, then cost(Π)≥ n/ log M−1.

Proof. Modify Π to add the query 1T, which reports |Z|; this increases cost(Π) by one. Let A ∈ Z(d+1)×n be

the modified query matrix. Since Π is correct, Az determines an index i1 ∈ Z. Let ei1 be the indicator vector

for i1; since we know ei1 , we can compute A(z−ei1) without making another query; this is enough to find an

index i2 ∈ Zr{i1}. Repeating this |Z| times, we can reconstruct Z from Az alone. (This works for all Z 6=∅;

since we query 1T, we can also detect when |Z|= 0.) By the pigeonhole principle, the number of possible

values of Az must be at least the number of valid inputs, so Md+1 ≥ 2n, which implies d ≥ n/ log M−1.

For our round elimination argument, we require the following claim, similar to Lemma 3.2 and Lemma 4.2.

Even though the claim looks similar, the round elimination argument will be subtly different from its Z2 and

Zq predecessors.

Claim 5.4. Every matrix A∈Zd×n admits an A-uniform family S1, . . . ,Sm of size m≥ n/(c0d log n log M)−1,

for some absolute constant c0.

Proof. Put t = ⌈d log M⌉. Since Π is M-bounded, the mapping x 7→ Ax sends the vectors in {x ∈ {0,1}n :

|x| = t} to vectors in Z
d where each entry comes from a set of cardinality M. By the pigeonhole principle,

there exists a vector r̃ ∈ Z
d such that

F := {x ∈ {0,1}n : |x|= t and Ax = r̃} has cardinality |F | ≥
(

n

t

)
M−d . (13)

We claim that F contains an m-sunflower for some integer m. Indeed, take m to be the largest integer

satisfying

mt logn <
n

2c1

, which ensures that m≥ n

c0d log n logM
−1 . (14)

This satisfies the claimed bound upon taking c0 = 2c1 (say). Continuing from eq. (13),

|F | ≥
(n

t

)t

M−d
⊳ standard estimate

≥
( n

2t

)t

⊳ definition of t

≥ (c1m logn)t
⊳ by eq. (14)

≥ (c1m log(mt))t , ⊳ by eq. (14), again

whence the required sunflower exists, by Theorem 2.5.

Let S̃1, . . . , S̃m be sets constituting such an m-sunflower and let V =
⋂m

i=1 S̃i be the common pairwise

intersection. Define Si = S̃i rV , for each i ∈ [m]. We then have Asi = A(s̃i−v) = r̃−Av for each i, whence

S1, . . . ,Sm is an A-uniform family.

Lemma 5.5 (Round elimination lemma). Let Π be a k-round M-bounded Z-LQP for ELEMXn, where k ≥ 1

and n is an integer. Then there exists a (k−1)-round M-bounded Z-LQP ϒ for ELEMX
1/4
m , such that
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(5.5.1) ϒ shadows Π through a homomorphism ϕϒ : ϒ→Π;

(5.5.2) m/4 is a prime number and

m≥ n

2c0d log n log M
−2 ,

where d is the cost of the root of Π, and c0 the constant from Claim 5.4.

Proof. Let A ∈ Z
d×n be the label of the root of Π. By Claim 5.4, there is an A-uniform family S1, . . . ,Sm′

of size m′. By Bertrand’s postulate, there exists a prime number p between between m′/8 and m′/4; let

m = 4p. Let x = As1, r = (m/4)x and let L be the lifting matrix defined from {Si}m
i=1 according to eq. (6).

Using Lemma 2.8 on Π, L, and r, we obtain a (k−1)-round Z-LQP ϒ that shadows Π, and solves ELEMXm

on all inputs W ⊆ [m] for which Lw 6= 0 and ALw = r. While the queries performed by ϒ may have larger

coefficients than those of Π, the construction of ϒ described in Section 2.3 only restricts the possible results

of each individual linear measurement performed, so ϒ is still M-bounded. Finally, if |W |= m/4, then since

L has full rank, Lw 6= 0; and furthermore

ALw = ∑
i∈W

Asi = |W |x =
m

4
x = r .

This implies that ϒ gives the correct output for W ⊆ [m] fulfilling the promise of ELEMX
1/4
m .

The preceding round elimination lemma has a key limitation: it requires a protocol for ELEMXn to create

one for ELEMX
1/4
m . Because of this, it is not possible to apply the lemma to its own output, and thereby obtain

a k-round lower bound. Say we were to try, and A were the matrix at the root of the protocol Π for ELEMX
1/4
n .

Then if A contained an all-ones row, Claim 5.4 might produce an A-uniform family with all set sizes |Si|
equal to some constant b which is not a factor of n/4. Then lifting inputs W of size m/4 to inputs Z of size

n/4 would fail, because n/4 = |Z|= b|W | would imply that b divides n/4, a contradiction.

With that said, we now use our round elimination lemma in a one-shot fashion to obtain our main result

for integer LQPs.

Theorem 5.6 (Restatement of Theorem 1.6). LQ2
Z[−B,B]

(ELEMXn) = Ω(
√

n/(log3/2(nB))).

Proof. Suppose that Π is a deterministic 2-round Z[−B,B]-LQP for ELEMXn, whose root has cost d1. By

Lemma 5.5, there is a one round O(nB)-bounded protocol for ELEMX
1/4
m with cost d2. Combining the

following three equations:

cost(Π)≥ d1 +d2

d2 ≥
0.14m

logM
⊳ from Lemma 5.2

m≥ n

2c0d1 logn log M
−2 ⊳ from Lemma 5.5

gives

cost(Π)≥ 0.19

√
n

c0 logn log2 M
−2 = Ω

( √
n

log3/2(nB)

)
.

6 Upper Bounds

For the sake of completeness, we provide details of the LQPs attaining various upper bounds referenced

throughout the paper. For the most part, these upper bounds are simple observations or extensions of well-

known existing results.
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6.1 Deterministic k-round LQP for ELEMX

The following family of protocols works both when D = Z[0,1] on the problem ELEMXn, and when D = Zq

on the problem ELEMX
(q)
n . The algorithm appears to be well known, and versions of it are described in

Lemma 4.1 of [ACK20] and Section 2.2 of [KUW88].

Let d1, . . . ,dk be a division sequence (see Lemma 3.5) for n, which minimizes ∑k
i=1 di. Algorithm 6.1

makes no more than dr queries in each round r.

Algorithm 6.1 Outline of deterministic query protocol on z

1: [u,v]← [1,n]
2: for r = 1, . . . ,k do

3: Split the interval [u,v] into dr +1 intervals J1, . . . ,Jdr+1, each of size ≤ ⌈ v−u+1
dr+1
⌉

4: Query with matrix A ∈ Ddr×n, where Ai, j is 1 if j ∈ Ji and 0 otherwise.

5: If Az is not all zero, let i ∈ [dr] be the index of any nonzero entry; otherwise, let i = dr +1.

6: Update [u,v]← Ji.

7: Report u as the index where u ∈ Z.

Since d1, . . . ,dk is a division sequence for n, the final interval [u,v] must have u = v. The total cost of

the protocol is ∑k
i=1 di, which by Lemma 3.5 lies in the interval [k(n1/k−1),k(⌈n1/k⌉−1)]. Note that when

n = 2k, the algorithm cost is exactly k.

Write 1S to denote the indicator vector in Dn for a given set S ⊆ [n]. To prove that the algorithm is

correct, it suffices to verify that 1T[u,v]z 6= 0 in each round. Since 1Tz 6= 0, this is true at the start. For any

given round, the matrix A queries 1J1
, . . . ,1Jdr

. Since 1[u,v] = ∑
dr+1
i=1 1Ji

, and 1T[u,v]z 6= 0, there must be some

first index i for which 1TJi
z 6= 0. If i < dr + 1, the index is shown in the query response; if i = dr + 1, then

no other intervals Jh have 1TJh
z 6= 0, so Az is all zeros. In either case, the algorithm correctly identifies the

interval Ji for which 1TJi
z 6= 0.

6.2 Randomized 1-round LQP for ELEMX

The ℓ0-sampling algorithm from [JST11] relies on a standard result on the exact recovery of sparse vectors

in R
n, which (paraphrasing) states that O(s) R-linear queries suffice to exactly recover any s-sparse vector

v in Rn, or if v is not sparse, say that the output is DENSE with high probability. The ℓ0-sampling algorithm

then chooses subsets {Ti}⌈logn⌉
i=1 where each Ti is uniformly randomly drawn from the set of all subsets of [n]

of size 2i. To obtain a constant final error probability, for each set Ti, the ℓ0-sampler runs the sparse recovery

method on the coordinates given by Ti with s = O(1). The sampler then returns a random index from the

first sparse recovery instance to successfully recover a nonzero vector. With high probability, at least one of

the sets Ti will contain fewer than O(1) entries of Z, and the algorithm succeeds.

Recovering s-sparse vectors in {0,1}n is easier than recovering general s-sparse vectors in R
n or Zn, so

directly adapting [JST11]’s ℓ0-sampling algorithm to ELEMX means only O(logn) queries are needed for

Z[−B,B] with B = O(poly(n)), and O(log2 n/ log q) for Zq. This follows from the costs of s-sparse recovery

and detection with D-linear queries and {0,1}n, addressed in the following lemma. We spell out this result

and its proof for the sake of completeness: though it may be folklore, it appears not to have been published

in quite this form.

Lemma 6.1 (Discrete s-sparse recovery). There exists a query matrix H ∈ Z
r×n
[−B,B] for r = O(s log n/ log B)

for which the query Hv returns a unique value for all V ⊆ [n] with |V | ≤ s. The same holds true for Zq with

r = O(s log n/ log q).
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Proof. Call a matrix in A ∈ Dr×t full-[−1,1]-rank if there does not exist a nonzero vector v ∈ {−1,0,1}t
for which Av = 0. If we choose a matrix B ∈ Dr×t uniformly at random, then it is full-[−1,1]-rank with

probability ≥ 1− 3t/|D|r. One way to prove this is to consider columns the b1 . . .bt of B one by one, and

note that if each bi is not contained in the set Fi := {∑i−1
j=1 aibi : a ∈ {−1,0,1}i−1}, then B has full-[−1,1]-

rank. Since B is chosen uniformly at random, each column is independent of the the earlier ones, so

Pr[D doesn’t have full [−1,1]-rank]≤
t

∑
i=1

Pr[bi /∈ Fi]≤
t

∑
i=1

3i−1

|D|r ≤
3t

|D|r .

Let r be chosen later; if we pick Ĥ ∈Dr×n uniformly at random, then the expected number of sets T ⊆ [n]
with |T |= 2s for which ĤT (the submatrix of Ĥ with columns in T ) has full [−1,1]-rank is ≤

(
n
2s

)
32s/|D|n.

Letting r = ⌈2s log(3n)/ log(|D|)⌉ makes this less than 1. Consequently, there must exist a specific matrix

H for which every such submatrix HT has full [−1,1]-rank. Then for any two distinct vectors u,v ∈ {0,1}n

with |U |, |V | ≤ s, we cannot have Hu = Hv, because that would imply there exists T ⊇U ∪V with |T |= 2s

for which HT (bu−bv) = 0, contradicting the full [−1,1]-rank assumption.

Detecting whether a {0,1}n vector is not s-sparse is also easier than in R
n. For Z[−B,B]-LQPs, querying

with the vector 1 ∈ Z
d suffices. For Zq, because Lemma 6.1 ensures that if a vector z is s-sparse, it can be

recovered exactly, it is enough to query O(1) random vectors in Z
n
q. Let r be such a random vector, and let w

be the s-sparse vector in {0,1} recovered using H; if z was s-sparse, then z = w and rTz = rTw; otherwise,

rTz does not equal rTw with probability 1−1/q.

7 Connections Between Z2-LQPs and Circuit Complexity

A weaker version of Theorem 1.3 can be proven by combining existing results. As shown in the following

lemma, a given k-round Z2-LQP Π for ELEMX
(2) can be converted to a communication protocol ϒ for the

Karchmer-Wigderson game on PARITYn, with the communication cost C of ϒ being ≤ 2cost(Π). By a

slight adaptation of the proof of Theorem 5 in [NW93], we can convert ϒ into an unbounded fan-in boolean

formula with depth k+1 and no more than 2C−1 AND/OR gates that computes PARITYn. Relatively tight

lower bounds on the size of such a formula date back to [Has86], but we use a result of [Ros15], which says

that a depth-(k+1) unbounded fan-in formula computing PARITYn must have at least 2Ω(k(n1/k−1) AND/OR

gates. Thus cost(Π)≥ 1
2
C ≥Ω(k(n1/k−1)).

Lemma 7.1. Consider the Karchmer-Wigderson game for PARITYn, in which Alice has a set X ∈ {0,1}n

with |X | even, and Bob has a set Y ∈ {0,1}n with |Y | odd, and they seek to identify an index i ∈ [n] for which

xi 6= yi. Let Π be a k-round Z2-LQP for ELEMX
(2)
n ; then there exists ϒ a k-round communication protocol

for this game, with cost ≤ 2cost(Π).

Proof. Let ρ be the root of Π, with label Aρ ∈ Z
dρ×n

2 . In the first round of ϒ, Alice sends Aρx to Bob. Then

Bob computes Aρy, and uses Alice’s message to determine r1 = Aρ(x+y). The value r1 determines a child

node ν of ρ . If this is a leaf, Bob outputs its label oν . Otherwise, in the second round, Bob sends both

Aρy and Aνy to Alice. Given Aρy, Alice can determine ν , and compute Aνx. With this, Alice can compute

r2 = Aν(x+y), and identify the child node µ of ν . If this is a leaf, Alice outputs oµ ; otherwise, in the third

round, Alice sends Aνx and Aµx to Bob; the players continue in this fashion until a leaf is reached and the

protocol ends; since Π has depth k, this takes at most k rounds.

This protocol is correct, because it finds the leaf of Π associated to the input x+y. Since we are promised

x has even parity, and y odd, x+y has odd parity and thus fulfills the condition under which a protocol for

ELEMX
(2)
n must be correct. The output value is an index i where xi +yi = 1, hence where xi 6= yi, as required

for the communication game.
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Since Aρx ∈ Z
dρ

2 , the round first message uses exactly dρ bits. The second, dρ +dν , the third, dν +dµ ,

and so on. The communication needed on inputs (x,y) is thus at most twice cost(Π,x+y), so the worst-case

communication cost of ϒ is at most 2cost(Π).

8 Appendix

The following estimate was used in Section 4 during calculations in the proof of our Zq-LQP lower bound.

Lemma 8.1. Let C,D be constants with 2C ≤ D and D≥ 1. Then

max

(
lnn

C
,k

(
1

D
n1/k−1

))
≥ 1

D(1+C)
k
(

n1/k−1
)
. (15)

Proof. Let γn(k) = k(n1/k−1). We have k
(

1
D

n1/k−1
)
≥ 1

D
γn(k)−k. Since γn(k) is decreasing, let k⋆ be the

unique solution to 1
D

γn(k⋆) =
1
C

lnn. Since γn(ln n) = (e−1) ln n≤ 2ln n≤ D
C

lnn, it follows k⋆ ≤ lnn. Let k†

be the unique solution to 1
D

γn(k†)− k† =
1
C

lnn. Since k† ≤ k⋆, k† ≤ lnn as well. Evaluating the right hand

side of eq. (15) at k† gives:

1

D(1+C)
γn(k†) =

1

D(1+C)

(
D lnn

C
+Dk†

)

≤ 1

D(1+C)

(
D lnn

C
+D lnn

)

=
lnn

C
=

1

D
γn(k†)− k† .

Because the derivative of 1
D(1+C)γn(k) is less that of lnn

C
when k≥ k†, and greater than that of 1

D
γn(k)− k for

k ≤ k†, we can extend this inequality to all k ∈ (0,∞), proving eq. (15).
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