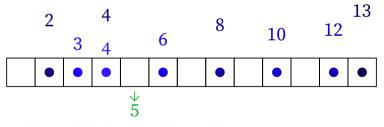
# Streaming Algorithms for the Missing Item Finding Problem

Manuel Stoeckl

Department of Computer Science, Dartmouth College\*

Symposium on Discrete Algorithms 2023



Slides are CC-BY-SA 4.0, and also available at https://mstoeckl.com

\*This work was supported in part by the National Science Foundation under award 2006589.

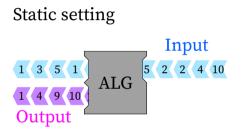
### Overview

#### About models for streaming algorithms

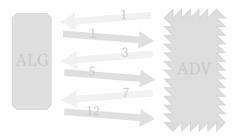
- Setting & type of randomness
- Missing Item Finding
- Basic results
- ► An open question

Proof and algorithm sketches

Setting of a streaming algorithm [Ben-Eliezer, Jayaram, Woodruff, and Yogev 2020]

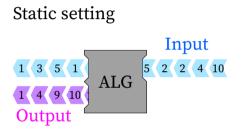


### Adversarial setting

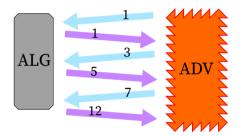


Makes no difference if deterministic

Setting of a streaming algorithm [Ben-Eliezer, Jayaram, Woodruff, and Yogev 2020]

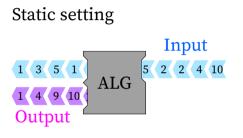


# Adversarial setting

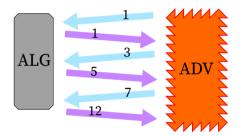


► Makes no difference if deterministic

Setting of a streaming algorithm [Ben-Eliezer, Jayaram, Woodruff, and Yogev 2020]



# Adversarial setting







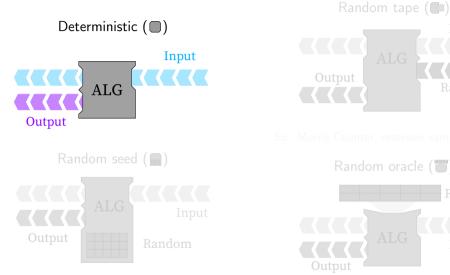




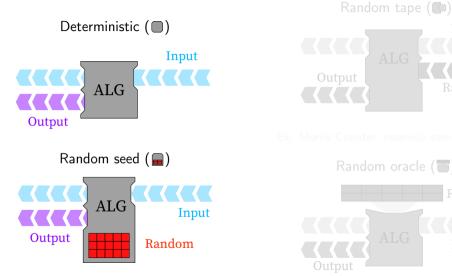
Ex: Morris Counter, reservoir sampling



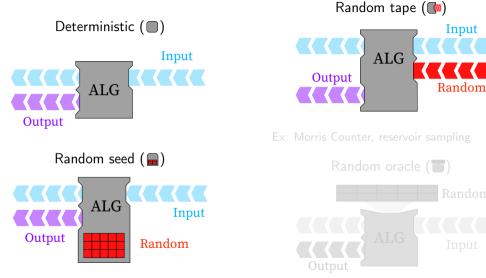
Ex: Linear sketches



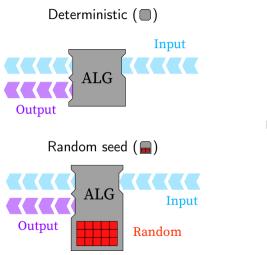
Ex: Linear sketches (with PRG, per Indyk 2006)



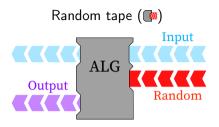
Ex: Linear sketches (with PRG, per Indyk 2006)



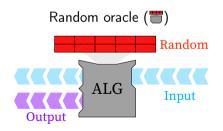
Ex: Linear sketches (with PRG, per Indyk 2006)



Ex: Linear sketches (with PRG, per Indyk 2006)

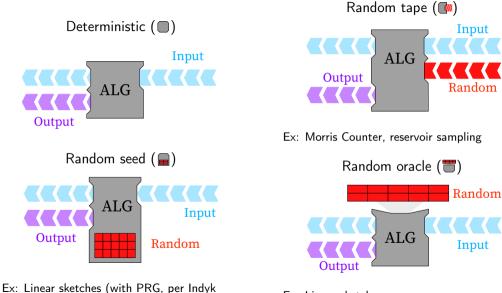


Ex: Morris Counter, reservoir sampling



Ex: Linear sketches

2006)



Ex: Linear sketches

# The Missing Item Finding Problem

• MIF (n, r) is given stream over [n] of length  $\leq r$  for r < n

For stream  $a_1, \ldots, a_i$ , output  $v \in [n] \setminus \{a_1, \ldots, a_i\}$ 

### Background

- MIF special cases in: [Chakrabarti, Ghosh, and Stoeckl 2022; Tarui 2007].
   See also:
  - Graph coloring in edge arrival streams [Assadi, Y. Chen, and Khanna 2019; Assadi, A. Chen, and G. Sun 2022; Chakrabarti, Ghosh, and Stoeckl 2022]
  - Card Guessing Game and Mirror Game [Garg and Schneider 2018; Menuhin and Naor 2022]
  - Static/adversarial separation [Kaplan, Mansour, Nissim, and Stemmer 2021]

# The Missing Item Finding Problem

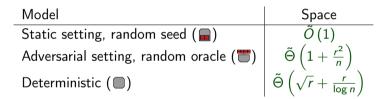
• MIF (n, r) is given stream over [n] of length  $\leq r$  for r < n

• For stream  $a_1, \ldots, a_i$ , output  $v \in [n] \setminus \{a_1, \ldots, a_i\}$ 

### Background

- MIF special cases in: [Chakrabarti, Ghosh, and Stoeckl 2022; Tarui 2007].
- See also:
  - Graph coloring in edge arrival streams [Assadi, Y. Chen, and Khanna 2019; Assadi, A. Chen, and G. Sun 2022; Chakrabarti, Ghosh, and Stoeckl 2022]
  - Card Guessing Game and Mirror Game [Garg and Schneider 2018; Menuhin and Naor 2022]
  - Static/adversarial separation [Kaplan, Mansour, Nissim, and Stemmer 2021]

Space complexity for Missing Item Finding<sup>†</sup>



<sup>†</sup>Error  $\delta = \Theta(1)$ ;  $r \leq n/2$ ; and  $\tilde{O}(\cdot)$  hides  $\operatorname{polylog} r$  factors

Adversarial setting, random oracle ("")

•  $\tilde{\Omega}\left(1+\frac{r^2}{n}\right)$  lower bound applies to all random models •  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  algorithm uses  $\tilde{\Omega}(r)$  oracle random bits. Open: random seed/tape

▶ Answer is NO in static setting ( $\tilde{O}(\log m)$  random seed sufficient by [Newman 1991])

#### 

- Random seed / tape models: use hardware random generator
- Random oracle: use cryptographic pseudo-random generator

Adversarial setting, random oracle (

- $\tilde{\Omega}\left(1+\frac{r^2}{n}\right)$  lower bound applies to all random models  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  algorithm uses  $\tilde{\Omega}(r)$  oracle random bits. Open: random seed/tape

### In adversarial setting, is random oracle necessary for least space?

▶ Answer is NO in static setting ( $\tilde{O}(\log m)$  random seed sufficient by [Newman 1991])

- Random seed / tape models: use hardware random generator
- Random oracle: use cryptographic pseudo-random generator

Adversarial setting, random oracle (

- $\tilde{\Omega}\left(1+\frac{r^2}{n}\right)$  lower bound applies to all random models  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  algorithm uses  $\tilde{\Omega}(r)$  oracle random bits. Open: random seed/tape

### In adversarial setting, is random oracle necessary for least space?

• Answer is NO in static setting ( $\tilde{O}(\log m)$  random seed sufficient by [Newman 1991])

► Impact:

- Random seed / tape models: use hardware random generator
- Random oracle: use cryptographic pseudo-random generator

Adversarial setting, random oracle (

- $\tilde{\Omega}\left(1+\frac{r^2}{n}\right)$  lower bound applies to all random models  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  algorithm uses  $\tilde{\Omega}(r)$  oracle random bits. Open: random seed/tape

#### In adversarial setting, is random oracle necessary for least space?

• Answer is NO in static setting ( $\tilde{O}(\log m)$  random seed sufficient by [Newman 1991])

#### Impact:

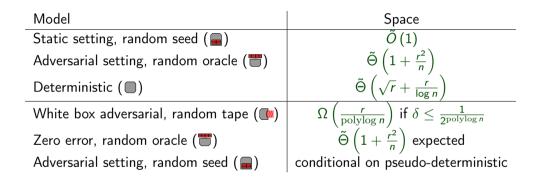
- Random seed / tape models: use hardware random generator
- Random oracle: use cryptographic pseudo-random generator

### Overview

# About models for streaming algorithms Proof and algorithm sketches

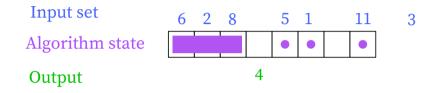
- ► Full result table
- Algorithm example
- Lower bounds

# Table of results<sup>‡</sup>



<sup>‡</sup>Error 
$$\delta = \Theta(1)$$
;  $r \leq n/2$ ; and  $\tilde{O}(\cdot)$  hides  $\operatorname{polylog} r$  factors

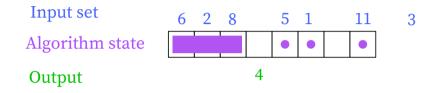
Algorithm for adversarial setting with random oracle ( $\bigcirc$ )



- Using  $\tilde{O}(r)$  bits from oracle, pick random list of length r+1
- Track which of elements in list have been seen
- Report first available element

• After analysis:  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  space needed w.h.p.

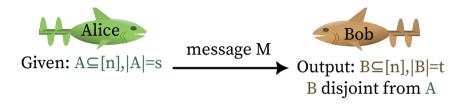
Algorithm for adversarial setting with random oracle ( $\blacksquare$ )



- Using  $\tilde{O}(r)$  bits from oracle, pick random list of length r+1
- Track which of elements in list have been seen
- Report first available element
- After analysis:  $\tilde{O}\left(1+\frac{r^2}{n}\right)$  space needed w.h.p.

Lower bound: Adversarial setting, random oracle (

)

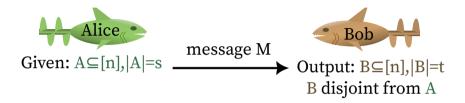


• Implement AVOID $(n, s = \frac{r}{2}, t = \frac{r}{2} + 1)$  using MIF(n, r)

- ► Needs  $\Omega(st/n) = \Omega(r^2/n)$  bitsChakrabarti, Ghosh, and Stoeckl 2022
- M = MIF algorithm state on  $a_1, \ldots, a_s = A$
- $\triangleright$  B = set formed by repeatedly asking algorithm for output and feeding output back into algorithm

Lower bound: Adversarial setting, random oracle (

)

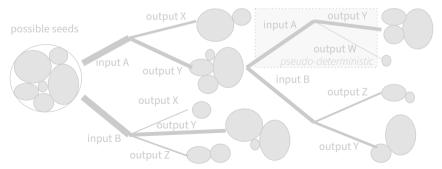


▶ Implement AVOID $(n, s = \frac{r}{2}, t = \frac{r}{2} + 1)$  using MIF(n, r)

- ▶ Needs  $\Omega(st/n) = \Omega(r^2/n)$  bitsChakrabarti, Ghosh, and Stoeckl 2022
- M = MIF algorithm state on  $a_1, \ldots, a_s = A$
- B = set formed by repeatedly asking algorithm for output and feeding output back into algorithm

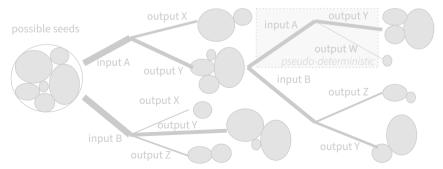
# $Pseudo-deterministic (PD) \ streaming \ algorithms \ [Goldwasser, \ Grossman, \ Mohanty, \ and \ Woodruff \ 2020]$

- $\blacktriangleright\,$  For any input stream, will give exact same output with probability  $\geq 1-\delta\,$
- $\tilde{\Omega}(\sqrt{r})$  lower bound for random seed, adversarial setting IF pseudo-deterministic requires  $\tilde{\Omega}(r)$  space:
- Design adversary for random seed algorithm over a number of epochs. Either:
  - Adversary can learn information about random seed (happens only O (space) times)
  - Algorithm behaves pseudo-deterministically on a short stretch of the stream



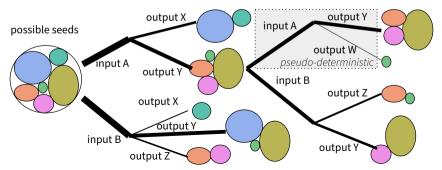
# $Pseudo-deterministic (PD) \ streaming \ algorithms \ [Goldwasser, \ Grossman, \ Mohanty, \ and \ Woodruff \ 2020]$

- $\blacktriangleright\,$  For any input stream, will give exact same output with probability  $\geq 1-\delta\,$
- $\tilde{\Omega}(\sqrt{r})$  lower bound for random seed, adversarial setting IF pseudo-deterministic requires  $\tilde{\Omega}(r)$  space:
- Design adversary for random seed algorithm over a number of epochs. Either:
  - Adversary can learn information about random seed (happens only O (space) times)
  - Algorithm behaves pseudo-deterministically on a short stretch of the stream



Pseudo-deterministic (PD) streaming algorithms [Goldwasser, Grossman, Mohanty, and Woodruff 2020]

- $\blacktriangleright\,$  For any input stream, will give exact same output with probability  $\geq 1-\delta\,$
- $\tilde{\Omega}(\sqrt{r})$  lower bound for random seed, adversarial setting IF pseudo-deterministic requires  $\tilde{\Omega}(r)$  space:
- Design adversary for random seed algorithm over a number of epochs. Either:
  - Adversary can learn information about random seed (happens only O (space) times)
  - Algorithm behaves pseudo-deterministically on a short stretch of the stream



Pseudo-deterministic (PD) streaming algorithms [Goldwasser, Grossman, Mohanty, and Woodruff 2020]

- $\blacktriangleright\,$  For any input stream, will give exact same output with probability  $\geq 1-\delta\,$
- $\tilde{\Omega}(\sqrt{r})$  lower bound for random seed, adversarial setting IF pseudo-deterministic requires  $\tilde{\Omega}(r)$  space:
- Design adversary for random seed algorithm over a number of epochs. Either:
  - Adversary can learn information about random seed (happens only O (space) times)
  - Algorithm behaves pseudo-deterministically on a short stretch of the stream

### Updates

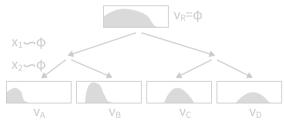
Space lower bound for PD, given a random seed adversarial lower bound Explicit  $\tilde{O}\left(\sqrt{r} + \frac{r^2}{n}\right)$  random seed upper bound in adversarial setting

# White box adversarial setting [Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou 2022], with random tape (

- White box adversary sees algorithm state, but not future random tape
- Lower bound:  $\tilde{\Omega}(r)$  if  $\delta \leq 2^{-\operatorname{polylog} n}$ , proven by contradiction using adversary:

• Want to sample next few inputs from  $\phi$ , where  $\phi$  also equals expected output distribution

Use Brouwer's fixed point theorem



Output distribution at state avoids inputs leading to it

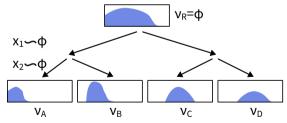
"concentration" of output distributions must increase beyond limit: contradiction

# White box adversarial setting [Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou 2022], with random tape (

- ▶ White box adversary sees algorithm state, but not future random tape
- ► Lower bound:  $\tilde{\Omega}(r)$  if  $\delta \leq 2^{-\text{polylog }n}$ , proven by contradiction using adversary:

• Want to sample next few inputs from  $\phi$ , where  $\phi$  also equals expected output distribution

Use Brouwer's fixed point theorem



Output distribution at state avoids inputs leading to it

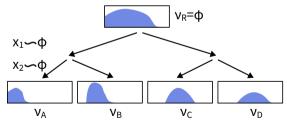
"concentration" of output distributions must increase beyond limit: contradiction

# White box adversarial setting [Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou 2022], with random tape (

- ▶ White box adversary sees algorithm state, but not future random tape
- ► Lower bound:  $\tilde{\Omega}(r)$  if  $\delta \leq 2^{-\text{polylog }n}$ , proven by contradiction using adversary:

 $\blacktriangleright$  Want to sample next few inputs from  $\phi,$  where  $\phi$  also equals expected output distribution

Use Brouwer's fixed point theorem



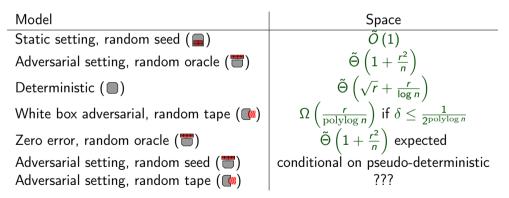
Output distribution at state avoids inputs leading to it

"concentration" of output distributions must increase beyond limit: contradiction

# Summary

• Missing Item Finding(n, r): find element not in stream so far

► In adversarial setting, is random oracle necessary?



Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff, and Samson Zhou. The white-box adversarial data stream model. In *Proc. 41st ACM Symposium on Principles of Database Systems*, pages 15–27, 2022. doi: 10.1145/3517804.3526228.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for  $(\Delta + 1)$  vertex coloring. In *Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 767–786, 2019. doi: 10.1137/1.9781611975482.48.

Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring in the streaming model. In *Proc. 54th Annual ACM Symposium on the Theory of Computing*, pages 261–274, 2022. doi: 10.1145/3519935.3520016.

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In *Proc. 39th ACM Symposium on Principles of Database Systems*, pages 63–80, 2020. doi: 10.1145/3375395.3387658.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph streams. In *Proc. 13th Conference on Innovations in Theoretical Computer Science*, 37:1–37:23, 2022. doi: 10.4230/LIPIcs.ITCS.2022.37.

- Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In *Proc. 20th Conference on Innovations in Theoretical Computer Science*, volume 151, 79:1–79:25, 2020. doi: 10.4230/LIPIcs.ITCS.2020.79.
- Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In *Proc. 10th Conference on Innovations in Theoretical Computer Science*, 36:1–36:14, 2018. doi: 10.4230/LIPIcs.ITCS.2019.36.
  - Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. *J. ACM*, 53(3):307–323, 2006.

Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming from oblivious streaming using the bounded storage model. In *Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III,* volume 12827 of *Lecture Notes in Computer Science,* pages 94–121. Springer, 2021. doi: 10.1007/978-3-030-84252-9\_4.

Boaz Menuhin and Moni Naor. Keep that card in mind: card guessing with limited memory. In *Proc. 13th Conference on Innovations in Theoretical Computer Science*, 107:1–107:28, 2022. doi: 10.4230/LIPIcs.ITCS.2022.107.

Ilan Newman. Private vs. common random bits in communication complexity. *Inform. Process. Lett.*, 39(2):67–71, 1991.

Jun Tarui. Finding a duplicate and a missing item in a stream. In *Proc.* 4th International Conference on Theory and Applications of Models of Computation, pages 128–135, 2007. doi: 10.1007/978-3-540-72504-6\_11.