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Overview

About models for streaming algorithms
▶ Setting & type of randomness
▶ Missing Item Finding
▶ Basic results
▶ An open question

Proof and algorithm sketches
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Setting of a streaming algorithm [Ben-Eliezer, Jayaram, Woodruff, and Yogev 2020]
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Access to randomness
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The Missing Item Finding Problem

▶ MIF (n, r) is given stream over [n] of length ≤ r for r < n

▶ For stream a1, . . . , ai , output v ∈ [n] \ {a1 . . . , ai}

Background

▶ MIF special cases in: [Chakrabarti, Ghosh, and Stoeckl 2022; Tarui 2007].
▶ See also:

▶ Graph coloring in edge arrival streams [Assadi, Y. Chen, and Khanna 2019; Assadi,
A. Chen, and G. Sun 2022; Chakrabarti, Ghosh, and Stoeckl 2022]

▶ Card Guessing Game and Mirror Game [Garg and Schneider 2018; Menuhin and Naor
2022]

▶ Static/adversarial separation [Kaplan, Mansour, Nissim, and Stemmer 2021]
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Space complexity for Missing Item Finding†

Model Space
Static setting, random seed ( ) Õ (1)
Adversarial setting, random oracle ( ) Θ̃

(
1 + r2

n

)
Deterministic ( ) Θ̃

(√
r + r

log n

)

†Error δ = Θ(1); r ≤ n/2; andÕ (·) hides polylog r factors
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Do stronger lower bounds hold for random seed/tape algorithms in
adversarial setting?

▶ Adversarial setting, random oracle ( )
▶ Ω̃

(
1 + r2

n

)
lower bound applies to all random models

▶ Õ
(
1 + r2

n

)
algorithm uses Ω̃ (r) oracle random bits. Open: random seed/tape

In adversarial setting, is random oracle necessary for least space?

▶ Answer is NO in static setting (Õ (logm) random seed sufficient by [Newman 1991])

▶ Impact:
▶ Random seed / tape models: use hardware random generator
▶ Random oracle: use cryptographic pseudo-random generator
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Overview

About models for streaming algorithms
Proof and algorithm sketches
▶ Full result table
▶ Algorithm example
▶ Lower bounds
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Table of results‡

Model Space
Static setting, random seed ( ) Õ (1)
Adversarial setting, random oracle ( ) Θ̃

(
1 + r2

n

)
Deterministic ( ) Θ̃

(√
r + r

log n

)
White box adversarial, random tape ( ) Ω

(
r

polylog n

)
if δ ≤ 1

2polylog n

Zero error, random oracle ( ) Θ̃
(
1 + r2

n

)
expected

Adversarial setting, random seed ( ) conditional on pseudo-deterministic

‡Error δ = Θ(1); r ≤ n/2; andÕ (·) hides polylog r factors
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Algorithm for adversarial setting with random oracle ( )

Input set

Algorithm state

Output

1 32

4

6 58 11

▶ Using Õ (r) bits from oracle, pick random list of length r + 1
▶ Track which of elements in list have been seen
▶ Report first available element

▶ After analysis: Õ
(
1 + r2

n

)
space needed w.h.p.
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Lower bound: Adversarial setting, random oracle ( )

Bob
Given: A⊆[n],|A|=s Output: B⊆[n],|B|=t

B disjoint from A

message M
Alice

▶ Implement AVOID
(
n, s = r

2 , t =
r
2 + 1

)
using MIF (n, r)

▶ Needs Ω (st/n) = Ω
(
r2/n

)
bitsChakrabarti, Ghosh, and Stoeckl 2022

▶ M = MIF algorithm state on a1, . . . , as = A
▶ B = set formed by repeatedly asking algorithm for output and feeding output back

into algorithm
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Pseudo-deterministic (PD) streaming algorithms [Goldwasser, Grossman, Mohanty, and

Woodruff 2020]

▶ For any input stream, will give exact same output with probability ≥ 1 − δ

▶ Ω̃
(√

r
)

lower bound for random seed, adversarial setting IF pseudo-deterministic
requires Ω̃ (r) space:

▶ Design adversary for random seed algorithm over a number of epochs. Either:
▶ Adversary can learn information about random seed (happens only O (space) times)
▶ Algorithm behaves pseudo-deterministically on a short stretch of the stream

possible seeds

input A

input A

input B

input B

output X

output X

output Y

output Y

output Y
output Z

output Z

output Y

output W
pseudo-deterministic
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Pseudo-deterministic (PD) streaming algorithms [Goldwasser, Grossman, Mohanty, and

Woodruff 2020]

▶ For any input stream, will give exact same output with probability ≥ 1 − δ

▶ Ω̃
(√

r
)

lower bound for random seed, adversarial setting IF pseudo-deterministic
requires Ω̃ (r) space:

▶ Design adversary for random seed algorithm over a number of epochs. Either:
▶ Adversary can learn information about random seed (happens only O (space) times)
▶ Algorithm behaves pseudo-deterministically on a short stretch of the stream

Updates

Space lower bound for PD, given a random seed adversarial lower bound
Explicit Õ

(√
r + r2

n

)
random seed upper bound in adversarial setting
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White box adversarial setting [Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou

2022], with random tape ( )
▶ White box adversary sees algorithm state, but not future random tape
▶ Lower bound: Ω̃ (r) if δ ≤ 2−polylog n, proven by contradiction using adversary:
▶ Want to sample next few inputs from ϕ, where ϕ also equals expected output

distribution
▶ Use Brouwer’s fixed point theorem

νA νB νC νD

x1ᯈϕ
x2ᯈϕ

νR=ϕ

▶ Output distribution at state avoids inputs leading to it
▶ “concentration” of output distributions must increase beyond limit: contradiction
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Summary

▶ Missing Item Finding(n, r): find element not in stream so far
▶ In adversarial setting, is random oracle necessary?

Model Space
Static setting, random seed ( ) Õ (1)
Adversarial setting, random oracle ( ) Θ̃

(
1 + r2

n

)
Deterministic ( ) Θ̃

(√
r + r

log n

)
White box adversarial, random tape ( ) Ω

(
r

polylog n

)
if δ ≤ 1

2polylog n

Zero error, random oracle ( ) Θ̃
(
1 + r2

n

)
expected

Adversarial setting, random seed ( ) conditional on pseudo-deterministic
Adversarial setting, random tape ( ) ???



Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun,
David P. Woodruff, and Samson Zhou. The white-box adversarial data
stream model. In Proc. 41st ACM Symposium on Principles of Database
Systems, pages 15–27, 2022. doi: 10.1145/3517804.3526228.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for
(∆+ 1) vertex coloring. In Proc. 30th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 767–786, 2019. doi:
10.1137/1.9781611975482.48.

Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring
in the streaming model. In Proc. 54th Annual ACM Symposium on the
Theory of Computing, pages 261–274, 2022. doi:
10.1145/3519935.3520016.

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev.
A framework for adversarially robust streaming algorithms. In Proc. 39th
ACM Symposium on Principles of Database Systems, pages 63–80, 2020.
doi: 10.1145/3375395.3387658.

1/4

https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/3519935.3520016
https://doi.org/10.1145/3375395.3387658


Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially
robust coloring for graph streams. In Proc. 13th Conference on
Innovations in Theoretical Computer Science, 37:1–37:23, 2022. doi:
10.4230/LIPIcs.ITCS.2022.37.

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and
David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th
Conference on Innovations in Theoretical Computer Science, volume 151,
79:1–79:25, 2020. doi: 10.4230/LIPIcs.ITCS.2020.79.

Sumegha Garg and Jon Schneider. The Space Complexity of Mirror
Games. In Proc. 10th Conference on Innovations in Theoretical Computer
Science, 36:1–36:14, 2018. doi: 10.4230/LIPIcs.ITCS.2019.36.

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings,
and data stream computation. J. ACM, 53(3):307–323, 2006.

2/4

https://doi.org/10.4230/LIPIcs.ITCS.2022.37
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.4230/LIPIcs.ITCS.2019.36


Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer.
Separating adaptive streaming from oblivious streaming using the bounded
storage model. In Advances in Cryptology - CRYPTO 2021 - 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes
in Computer Science, pages 94–121. Springer, 2021. doi:
10.1007/978-3-030-84252-9_4.

Boaz Menuhin and Moni Naor. Keep that card in mind: card guessing with
limited memory. In Proc. 13th Conference on Innovations in Theoretical
Computer Science, 107:1–107:28, 2022. doi:
10.4230/LIPIcs.ITCS.2022.107.

Ilan Newman. Private vs. common random bits in communication
complexity. Inform. Process. Lett., 39(2):67–71, 1991.

3/4

https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.4230/LIPIcs.ITCS.2022.107


Jun Tarui. Finding a duplicate and a missing item in a stream. In Proc.
4th International Conference on Theory and Applications of Models of
Computation, pages 128–135, 2007. doi:
10.1007/978-3-540-72504-6_11.

4/4

https://doi.org/10.1007/978-3-540-72504-6_11

	Models for streaming algorithms
	Appendix
	Appendix
	Bibliography

	References


