
Streaming algorithms for the missing item finding problem

Manuel Stoeckl∗

Abstract

Many problems on data streams have been studied at two extremes of difficulty: either
allowing randomized algorithms, in the static setting (where they should err with bounded
probability on the worst case stream); or when only deterministic and infallible algorithms are
required. Some recent works have considered the adversarial setting, in which a randomized
streaming algorithm must succeed even on data streams provided by an adaptive adversary that
can see the intermediate outputs of the algorithm.

In order to better understand the differences between these models, we study a streaming
task called “Missing Item Finding”. In this problem, for r < n, one is given a data stream
a1, . . . , ar of elements in [n], (possibly with repetitions), and must output some x ∈ [n] which
does not equal any of the ai. We prove that, for r = nΘ(1) and δ = 1/poly(n), the space
required for randomized algorithms that solve this problem in the static setting with error δ is
Θ(polylog(n)); for algorithms in the adversarial setting with error δ, Θ((1 + r2/n)polylog(n));
and for deterministic algorithms, Θ(r/polylog(n)). Because our adversarially robust algorithm
relies on free access to a string of O(r log n) random bits, we investigate a “random start” model
of streaming algorithms where all random bits used are included in the space cost. Here we find
a conditional lower bound on the space usage, which depends on the space that would be needed
for a pseudo-deterministic algorithm to solve the problem. We also prove an Ω(r/polylog(n))
lower bound for the space needed by a streaming algorithm with < 1/2polylog(n) error against
“white-box” adversaries that can see the internal state of the algorithm, but not predict its
future random decisions.

1 Introduction

A streaming algorithm is one which processes a long sequence of input data and performs a com-
putation related to it. In general, we would like such algorithms to use as little memory as possible
– preferably far less than the length of the input – while producing incorrect output with as low a
probability as possible. For some problems, there is a space-efficient deterministic algorithm, which
works for all possible inputs; but many others require randomized algorithms which, for any input,
have a bounded probability of failure.

In the adversarial setting [BJWY20], one considers the case where a randomized algorithm is
processing an input stream that is produced in real time, and furthermore the algorithm continually
produces outputs depending on the partial stream that it has seen so far. It is possible that the
outputs of the streaming algorithm will affect the future contents of the input stream; whether by
accident or malice, this feedback may yield an input stream for which the randomized algorithm
gives incorrect outputs. Thus, in the adversarial setting, we require that an algorithm has a bounded
probability of failure, even when the input stream is produced by an adversary that can see all past
outputs of the algorithm.

∗Department of Computer Science, Dartmouth College.
This work was supported in part by the National Science Foundation under award 2006589.

1

The extent to which an algorithm is vulnerable to adversaries depends critically on the use of
randomness by the algorithm. If, given a randomized algorithm that has nonzero failure probability
on any fixed input stream, an adversary somehow manages to determine all the past and future
random choices made by an instance of the the algorithm, then the adversary can determine a
specific continuation of the input stream on which the instance fails. Algorithms that are robust to
adversaries often prevent the adversary from learning any of their important random decisions, and
ensure that the decisions which are revealed do not affect the future performance of the algorithm.
For example, [BJWY20] mentions a sketch-switching method in which a robust algorithm maintains
multiple independent copies of a non-robust algorithm; it emits output derived from one non-robust
instance until it reaches the point where an adversary might make the instance fail, at which point
the algorithm switches to another instance, none of whose random choices have been revealed to
the adversary yet.

Recent research has introduced models with requirements stronger than adversarial robustness.
In the white-box streaming model[AB+22], algorithms must avoid errors even when the adversary
can see the current state of the algorithm (i.e, including past random decisions), but not future
random decisions. In the pseudo-deterministic model[GGMW20], streaming algorithms should with
high probability always give the same output for a given input; such algorithms are automatically
robust against adversaries, because (assuming the algorithm has not failed) the outputs of the
algorithm reveal nothing about any random decisions made by the algorithm.

In order to better understand the differences between all these models, we study a streaming
problem known as Missing Item Finding (mif). This problem is perhaps the simplest search prob-
lem for data streams where the space of possible answers shrinks as the stream progresses. For
parameters r < n, given an data stream a1, . . . , ar of length r, where each element ei is an integer
in the range [n], the goal of the mif(n, r) problem is to identify some integer x ∈ [n] for which, for
all i ∈ [r], x ̸= ai.

This problem is of interest because it has significantly different space complexities for regular
randomized streaming algorithms, adversarially robust streaming algorithms, and deterministic
streaming algorithms. Surprisingly, our adversarially robust algorithm when r =

√
n needs oracle

access to Õ(
√
n) random bits, but only Õ(log n) random bits of mutable memory. One of the

main open problems left by our work is whether this is necessary. Our white-box model lower
bound shows that the algorithm must make at least some random decisions that remain hidden
from the adversary, and a conditional lower bound shows that, if the pseudo-deterministic space
complexity of mif(n,

√
n) is Ω̃(

√
n), then the robust algorithm actually must use Ω̃(n1/4) bits of

space, including random bits.

1.1 Our results and contributions

Our results – a series of upper and lower bounds for space complexities of mif(n, r) in various
different models are given in Table 1. For a more precise description of the models and of what
guarantee exactly δ is associated with in each case, see Section 3.

We shall highlight some of the more novel results in what follows:

• Our adversarially robust algorithm for mif(n, r) uses its oracle-type access to random bits
to keep track of a list L of outputs that it could give. At each point in time, Algorithm 3
outputs the first element of L which is still available. An adversary can choose to make the
algorithm move to the next list element, but it cannot reliably provide an element from L
that it has not yet seen. For the algorithm, switching to the next list element is easy – it
just increments a counter – but keeping track of future intersections between the L and the

2

Model Lower bound Upper bound Source

Classical Ω(
√

log(1/δ)
log(n) + log(1/δ)

(logn)(1+log(n/r)))

if δ ≥ 1/nr

min(r, log(1/δ)
log(n/r)) Thm 5, Thm 6

Adv. Robust Ω(r
2

n + log(1− δ)) O(min(r,
(
1 + r2

n + ln 1
δ

)
·

log r))

Thm 7 , Thm 8

Zero error ⋆ Ω(r
2

n) O(min(r, (1 + r2

n) log r) Thm 9, Thm 10

Deterministic Ω(
√
r + r

1+log(n/r)) O(
√
r log r + r log r

logn) Thm 11, Thm 12,

White box Ω(r/(log n)4) if δ ≤ 1/nO(logn) (see deterministic) Thm 13

Random start Ω(
√
r/polylog n), assuming

Pseudo-deterministic algs require
Ω(r/polylog n) bits

O((
√
r + r2/n) log n) Thm 16, Thm 17

Table 1: Table summarizing the upper and lower bounds on the space complexity of
algorithms for mif(n, r) in various models. δ is the worst case error – see Section 3 for
what this means in the different models. ⋆: Unlike the other models, the complexity
bounds for the zero error case are defined using of the expected algorithm space usage,
not the worst-case space usage.

stream requires that it record each intersecting element; fortunately, even with an adversary
there will not be too many such intersections.

• Our deterministic algorithm for mif(n, r) uses the (missing-) pigeonhole principle multiple
times, and stays within a factor log r of the space lower bound. Algorithm 4 proceeds in
several stages; in each stage, it considers a partition of the input space into a number of
different parts, and maintains a bit vector keeping track of which part contains an element
from the stream that arrived in the current stage. When there is exactly one part left, the
algorithm remembers that part, discards the bit vector, and moves on to the next stage and a
new partition of the input space. With suitably chosen partitions, the intersection of all the
remembered parts from the different stages will be nonempty and disjoint from each element
of the stream. The algorithm then reports an element from this intersection.

• Our white-box lower bound proof establishes an adversary that samples its next batch of
inputs using a distribution ν over [n] which is chosen so that the algorithm will also produce
outputs distributed according to ν. This is done using recursive applications of Brouwer’s
fixed point theorem: for example, at the base level, we can use it because the map from the
distribution on [n] out of which the remaining input elements are sampled, to the distribution
of the final algorithm output, is a continuous map from the space of distributions on [n] to
itself. Note that if ν picks some element with probability ≥ 2/3, then the algorithm will also
output that element with probability ≥ 2/3, leading to a ≥ 1/3 chance that the algorithm
incorrectly emits an output that it received in the stream. We then show that, if a white
box algorithm using less space than our lower bound exists, then said algorithm will fail with
≥ 1/2O((logn)2) probability. This follows by an inductive argument which shows that, at any
point in the stream, either the algorithm will make a mistake with significant probability, or
there is a large enough chance that the next distribution which the adversary picks will be

3

more “concentrated” than before, as measured by an ℓp norm for a value of p slightly larger
than 1. As distributions cannot be infinitely “concentrated”, it follows that the algorithm
will eventually make a mistake with some low probability.

• Our conditional lower bound proof for the “random start” model, relies on the observation
that at a given point in the stream, either the adversary is able to provide an input where
it learns a lot about the initial random bits of the algorithm, or the algorithm, because it
reveals very little about its internal randomness, also must consistently produce the same
output at some point, in response to the same input. We can use this behavior to construct
a pseudo-deterministic algorithm which works on a shorter input stream.

The rest of this paper is organized as follows. Related work is described in Section 2. Detailed
descriptions of the models for streaming algorithms are given in Section 3. Sections 4 through 9
contain the main results of this paper, organized according to the rows of Table 1; they can be read
in any order.

2 Related work

The Missing Item Finding problem appears to have been first studied by [Tar07]. While they
primarily consider the problem of finding a duplicate element in a stream of m > n elements chosen
from [n], most of their results also apply to mif(n, n− 1). For example, their multi-pass duplicate
finding algorithms can easily be translated to multiple pass algorithms to find a missing element.
Their main results also hold: they find an deterministic streaming algorithm for mif(n, n − 1)
using O(log n) bits of space must make Ω(log n/ log log n) passes over the stream, and claim that a
single-pass deterministic algorithm for mif(n, n− 1) requires at least 2n − 1 states.1

A variation on the Missing Item Finding problem, that forbids repeated elements in the input
stream, was briefly studied in the first section of [Mut05]. The paper mentions that for any k ≥ 1,
on a stream encoding a subset of [n] of size n−k, it is possible to recover the remaining k elements
with a sketch of size O(k log n). The paper [CGS22] also briefly mentions a variant of Missing
Item Finding to illustrate an exponential gap between space usage for regular randomized and
adversarially robust streaming algorithms. For the problem where the stream can list any strict
subset S of [n], and one must recover a single element not in S, they observe that there is a
randomized algorithm which uses an L0-sampling sketch to solve the problem in O((log n)2)) space;
but any adversarially robust algorithm that succeeds with high probability needs Ω(n) bits.

If we were to extend the Missing Item Finding problem to turnstile streams, then we would end
up with something opposite to the “support-finding” streaming problem. In the support-finding
problem, the algorithm is given a turnstile stream of updates to a vector x ∈ Z[n]; on querying the
algorithm, it must return any index i ∈ [n] where xi ̸= 0. [KNP+17] find that this problem – and
the harder L0 sampling problem, where one must find a uniformly random element of the support

of x – have a space lower bound of Ω
(
min

(
n, log 1

δ (log
n

log(1/δ))
2
))

. This is close to [JST11]’s L0

sampling algorithm which uses O(log 1
δ (log n)

2) bits of space.
The paper [MN22] studies a two player game that is similar to Missing Item Finding. Here there

are two players, a “Dealer” and a “Guesser”: for each of n turns, the players simultaneously do
the following: the Dealer chooses a number from [n] that it has not picked so far, and the Guesser
guesses a number in [n]. The goal of the Guesser is to maximize expected score, the number of
times their number matches the Dealer’s choice; the Dealer tries to minimize the score. The paper

1As Algorithm 1 uses exactly 2n−1 states for mif(n, n− 1), the value 2n − 1 may be a typo.

4

proves upper and lower bounds on the expected score, for a number of scenarios. Notably, a Guesser
that is limited to remember only m bits of information can do much better against a static Dealer
(that chooses a hard ordering of numbers at the start of the game) than against an adaptive Dealer
(that may choose the next number depending on the guesses made by the Guesser.) For example,
m = O((log n)2) suffices for an expected score of Ω(log n) against a static Dealer, but there exists
an adaptive Dealer which limits any Guesser’s expected score to (1+ o(1)) lnm+O(log log n). The
objectives of the Guesser and Dealer are similar to those of the algorithm and adversary in Missing
Item Finding: the Guesser tries to avoid, if possible, guessing any value that the Dealer has revealed
before; while the Dealer tries to ensure the Guesser chooses that the Dealer had already sent before.
However, unlike Missing Item Finding, the Dealer-Guesser game requires that numbers dealt never
be repeated and that all numbers be used, which makes it much easier to identify a number that
will be dealt in the future.

In the Mirror Game of [GS18], there are two players, Alice and Bob who alternately declare
numbers from the set [2n]. The players lose if they declare a number that has been declared
before. Since Alice goes first, even if Bob can only remember O(log n) bits about the history of
the game, Bob still has a simple strategy that will not lose. On the other hand, [GS18] prove that
in order for Alice to guarantee a draw against Bob, they require Ω(n) bits of memory. If a low
probability of error is acceptable, [Fei19] provide a randomized strategy for Alice with O((log n)3)
bits of memory that draws with high probability – but this requires oracle access to a large number
of random bits, or cryptographic assumptions. [Fei19] and [MN22] ask whether there is a strategy
using O(polylog n) bits of memory and of randomness. (Again, the objective of Alice in this game
is quite similar to that of the algorithm in Missing Item Finding – but numbers are never repeated,
and all numbers in [2n] are used by the end of the game.)

The problem of constructing an adversarially resilient Bloom filter is addressed by [NY19]. Here
one seeks a an “approximate set membership” data structure, which is initialized on a set S of size
n, and thereafter answers queries of the form “is x ∈ S” with false positive error probability ϵ. An
implementation of this structure is adversarially resilient if the false positive probability of the last
element in the sequence is still ≤ ϵ when the adversary chooses the sets S, and adaptively chooses
the sequence of t elements to query. In addition to lower and upper bound results conditional on
the existence of one-way functions, [NY19] find a construction for an adversarially resilient bloom
filter using O(n log 1/ϵ+ t) bits of memory.

There are many papers on the topic of adversarially robust streaming. Among them, we mention
[HW13], who prove that linear sketches on turnstile streams are not, in general, robust against
adversaries. [BY20] find that algorithms based on finding a representative random sample of
the elements in a stream may need only slight modification to work with adaptive adversaries;
[BJWY20] establish general methods to convert streaming algorithms with real valued output
that are not robust against adversaries to ones which are, in exchange for an increase in space
usage. [HKM+20] improve on the space tradeoff of this result by using differential privacy. [WZ22]
improve the space/approximation factor tradeoffs for adversarially robust algorithms on tasks like
Fp estimation.

The thread of finding separations between the space needed for classical streaming and for
adversarially robust streaming has been pursued by [KMNS21], who construct a problem whose
classical and adversarially robust space complexities are exponentially separated. [CGS22] mention
that this also holds for the variant of Missing Item Finding mentioned above, and prove a separation
for the adversarially robust space complexity of graph coloring on insertion streams.

Pseudo-deterministic streaming algorithms were first studied by [GGMW20]; the paper finds a
separation between the classical and pseudo-deterministic memory needed for the task of finding a
nonzero entry of a vector given by turnstile updates from a stream, among other problems. While

5

it is not a streaming task, the Find1 query problem – in which one is given a bit vector x with ≥ 1/2
density of ones, and must find an index i where xi = 1 by querying coordinates – has been found to
require significantly more queries in the pseudo-deterministic case than in the general randomized
case [GIPS21].

Streaming algorithms robust against white box adversaries were considered by [AB+22]; they
rule out efficient white-box adversarially robust algorithms for tasks like Fp moment estimation,
while finding algorithms for heavy-hitters-type problems. They also show how to reduce white-
box adversarially robust algorithms to deterministic 2-party communication protocols, where lower
bounds may be easier to prove.2

The Missing Item Finding problem has connections to graph streaming problems. Just as the
L0-sampling problem has been used by streaming algorithms that find a structure in a graph,
behaviors like those of the Missing Item Finding problem appear in algorithms that look for a
structure which is not in a graph. Specifically, the graph coloring problem is equivalent to finding a
small collection of cliques which cover all vertices but do not include any edge in the graph. [ACK19]
proved that general randomized streaming algorithms can ∆+1 color a graph in Õ(n) space, where
n is the number of vertices. [CGS22] showed that adversarially robust streaming algorithms in
Õ(n) space must use at least ∆2 colors for a graph of maximum degree ∆; and [ACS22] proved
that deterministic streaming algorithms using Õ(n) space must use exp(∆Ω(1)) colors. The papers
[CGS22] and [ACS22] are noteworthy in particular because their lower bound proofs use essentially
the same arguments as this paper’s lower bound proofs for Missing Item Finding. (In fact, our
proof of Theorem 7 was inspired by the [CGS22]’s proof, while Theorem 11 was independently
developed.) Because of this, we suspect that this paper’s white box lower bound will have an
analogue for graph coloring.

3 Preliminaries

Notation In this paper, following standard convention, [n] is the set {1, 2, . . . , n}, and
(
X
k

)
is

shorthand for the set of all subset of X of size k. For a finite set Y , we let △Y be the set of all
probability distributions over Y . For π a probability distribution over Y , we write α ∼ πk to mean
that α ∈ Y k and each coordinate of α is chosen independently at random according to π. For
some x ∈ Y , the distribution 1y is value 1 on y and value 0 everywhere else; drawing a sample
from this distribution will always result in y. The p-norm of a distribution ϕ on Y is written as

∥ϕ∥p :=
(∑

i∈Y ϕ(i)p
)1/p

. The notation [t]⋆ gives the set of all sequences of elements from t, of any
length. The empty sequence is written ϵ; a sequence s ∈ [t]⋆ may be written as (s1, s2, . . . , sk), in
which case its length |s| = k. To concatenate two sequences a and b, we write “a.b”. Õ(x) means
O(x polylog(x)), and Ω̃(x) means Ω(x/polylog(x)),

A simple algorithm While in most cases there are more efficient alternatives, this algorithm
for mif(n, r) is particularly simple:

2Unfortunately, for Missing Item Finding, the natural 2-party communication game is avoid(n, r/2, r/2), whose
deterministic communication lower bound is almost the same as the randomized lower bound. See Section 3.2. In
contrast, our deterministic and white box lower bounds both use O(logn) players/adaptive steps.

6

Algorithm 1 A simple deterministic streaming algorithm for mif(n, r)

Initialization:
1: x← {0, . . . , 0}, a vector in {0, 1}[r]

Update(e ∈ [n]):
2: if e ≤ r then
3: xe ← 1

Query:
4: if ∃j ∈ [r] : xj = 0 then
5: output: j
6: else
7: output: r + 1

3.1 Models for streaming algorithms

We now precisely define the models of streaming computation considered in this paper. We classify
the models by the type of randomness used, the measure of the cost of the algorithm, the setting
in which they are measured, and by any additional constraints.

Randomness A streaming algorithm for mif(n, r) has a set Σ of possible states; a possibly
random initial state sinit ∈ Σ, a possibly random transition function τ : Σ× [n]→ Σ, and a possibly
random output function ω : Σ→ [n]. The models of this paper will use the following four variations:

1. Random oracle: The initial state, transition function, and output function may all be
random and correlated; i.e, there is a space Ω and random variable R on that space for
which sinit is a function of R, and τ(s, a) = f(s, a,R) for some deterministic function f :
Σ× [n]×Ω→ Σ, and ω(s) = g(s,R) for some deterministic function g : Σ×Ω→ [n]. We can
view this as the algorithm having access to an oracle for all of its operations, which provides
the value of the variable R.

2. Random tape: In this case, the initial state, transition function, and output function are
all random, but they are uncorrelated; each step i of the algorithm has associated random
variables Ri,τ and Ri,ω, and all of these variables are independent of each other and of the
initial state sinit. The transition function of the algorithm is τ(s, a) = f(s, a,Ri,τ) for some
f , and the output function is ω(s) = g(s,Ri,ω) for some g. If the algorithm visits a state
twice, the transitions and outputs from that state will be independent. Intuitively, with this
type of access to randomness, the algorithm can always sample fresh random bits (i.e, reading
forward on a tape full of random bits), but cannot remember them for free.

3. Random seed: Here the initial state sinit may be chosen randomly, but the transition func-
tion and output function are deterministic. The algorithm only has access to the randomness
it had when it started.

4. Deterministic: The initial state is fixed, and the transition function and output function
are deterministic.

These variations are listed in decreasing order of strength; the random oracle model can emulate
the random tape model, which is stronger than the random seed model, which is stronger than

7

the deterministic model. Note that the random oracle model, while inconvenient to implement
exactly due to the need to store all the random bits used, can be approximated in practice, since
a cryptographically secure random number generator can be used to generate all the random bits
from a small random seed.3 Of course, if modern CSPRNGs based on functions like AES are
broken, or one-way functions are proven not to exist, then the random oracle model may prove
unreasonable.

Cost measure In this paper, the space cost of an algorithm is the worst case value, over all
possible streams or adversaries, of either the maximum number of bits used by the algorithm, or
the expected number of bits used by the algorithm. The number of bits required is determined by
a prefix-free encoding of the set Σ of states as strings in {0, 1}⋆; for most models, we measure the
maximum number of bits used, which is ⌈log |Σ|⌉ for the best encoding.

Setting The cost of an algorithm, and its probability of an error, are measured against the type
of inputs that it is given.

1. Static: In the static setting, the algorithm should give an incorrect output, on being queried
at the end of the stream, with probability ≤ δ, when it is given any fixed input stream.4

2. Adversarial: In the adversarial setting, we consider the algorithm as being part of a two
player game between it and an adversary; the algorithm receives a sequence of elements
e1, . . . , er from the adversary, and after each element ei, the algorithm shall produce an
output oi corresponding to the sequence e1, . . . , ei. The adversary chooses input ei based
on the transcript o0, e1, o1, e2, . . . , oi−1 that has been seen so far. The probability that the
sequence of outputs produced by the algorithm has an error should be be ≤ δ, for any
adversary.

3. White box adversarial: This is similar to the adversarial setting, except that here the
adversary chooses the next input ei as a function of the current state si of the algorithm.
Here, the probability that the algorithm should make a mistake when producing an output
at the end of the stream should be ≤ δ.

Extra constraints A streaming algorithm may be required to be pseudo-deterministic; in other
words, for any input stream σ = e1, . . . , er, there should be a corresponding output oσ of the
algorithm for which the algorithm is considered to have made a mistake if it does not output oσ.
In other words, the algorithm should (with probability ≥ 1− δ) behave as if it were deterministic.

A noteworthy constraint which we do not consider in the following set of models, is the require-
ment that the algorithm detects when its next output is not certain to be correct, and if so, aborts
instead of producing the wrong value. Most of the algorithms presented in this paper already have
this property – the one exception, Algorithm 2, can be patched to do so at the cost of an extra bit
of space.

3As the space cost of this seed can be shared between all tasks performed by a computer, we do not account for
it in the space cost estimates for this paper.

4This is a weaker condition than requiring that the entire sequence of intermediate outputs of the algorithm is
correct; however, our lower bounds in static and white-box adversarial settings only require this weaker condition.

8

Models The models of this paper are described by the following table:

Model Setting Randomness Cost Extra conditions

Classical Static Oracle Maximum space
Robust Adversarial Oracle Maximum space
Zero error Static Oracle Expected space δ = 0
Deterministic Static Deterministic Maximum space
White box robust White-box adv. Tape Maximum space
Pseudo-deterministic Static Oracle Maximum space Pseudo-deterministic
Random start Adversarial Seed Maximum space

A brief note on the “Zero error” model; this is a special case where the algorithm may be ran-
domized, but is required to always give correct output for any input stream; unlike the deterministic
model, the cost of the algorithm is the expected number of bits of space used by the algorithm. We
include this model because, in many cases, a computer may run many independent instances of a
streaming algorithm, and it is often more important that the instances do not fail than that they
hold to strict space limits. In this scenario, as long as the expected space used by each algorithm
is limited, and the worst case space usage is not too extreme, by the Chernoff bound it is unlikely
that the total space used by all the instances exceeds the expected space by a significant amount.
Unlike the case for time complexity, where a Las-Vegas algorithm can be obtained by repeating a
Monte-Carlo algorithm until the solution is verifiably correct, there is no simple way to construct
a single-pass, zero-error streaming algorithm from one with nonzero error.

We use the following notation for the space complexities of these models. The δ-error space
complexity of the classical model for a task T is Sδ(T); for the robust model, SAR

δ (T), for the zero
error model, S0(T); for the deterministic model, Sdet(T); for the white box robust model, SWB

δ (T);
for the pseudo-deterministic model, SPD

δ (T), and the random start model, SRS
δ (T). The following

relationships follow from the definitions of the models:

SAR
δ (T) ≤ SRS

δ (T) SRS
δ (T) ≤ Sdet(T)

Sδ(T) ≤ SAR
δ (T) SAR

δ (T) ≤ SWB
δ (T) SWB

δ (T) ≤ Sdet(T)

SAR
δ (T) ≤ SPD

δ (T) SPD
δ (T) ≤ Sdet(T)

S0(T) ≤ Sdet(T)

For problems in communication complexity, we write R→
δ (T) for the one-way randomized δ-error

communication complexity of task T , and D→(T) for the deterministic communication complexity.

3.2 Lemmas

The avoid(t, a, b) communication task This one-way communication game was introduced by
[CGS22]. In it, Alice is given S ⊆ [t] with |S| = a, and sends a message to Bob, who must produce
T ⊆ [t] with |T | = b where T is disjoint from S.

Lemma 1. (From [CGS22], Lemma 6) The public-coin δ error one-way communication complexity
of avoid(t, a, b) is at least log(1− δ) + log(

(
t
a

)
/
(
t−b
a

)
). Because(

t

a

)
/

(
t− b

a

)
=

t!(t− a− b)!

(t− a)!(t− b)!
≥ 2

ab
t ln 2

we have the weaker but more convenient lower bound R→
δ (avoid(t, a, b)) ≥ ab

t ln 2 + log(1− δ)

9

The above lower bound is mainly useful when ab ∈ [t, t2]. For smaller inputs:

Lemma 2. The public-coin δ-error one-way communication complexity of avoid(t, a, b) satisfies

R→
δ (avoid(t, a, b)) ≥ min

(
log(a+ 1), log

ln(1/δ)

ln(et/a)

)
.

For the deterministic case, we have D→(avoid(t, a, b)) ≥ log(a+ 1).

Proof. Say we have a public coin one-way randomized protocol Π for avoid(t, a, b) with error δ; by
the averaging argument, there exists a fixing of the randomness of the protocol, which is correct
on ≥ 1 − δ of the sets in

(
[t]
a

)
. Let Ψ be this deterministic protocol, and let m̂ be the number of

distinct messages sent by Ψ. Each message i ∈ [m̂] corresponds to some set Bi that Bob outputs
on receiving the message. Let E := {e1, . . . , em} be a hitting set for {Bi}i∈[m̂] of size m ≤ m̂; i.e,

for all Bi, there is some ej ∈ Bi. Let C ⊆
(
[t]
a

)
be the set of inputs for which Ψ is correct; we note

that no inputs in C can contain all of E, because if A ⊇ E, then every Bi intersects A, making the
protocol fail. Assuming m ≤ a, we have:

δ ≥ 1− |C|/
(
t

a

)
≥ |{A ∈

(
t

a

)
: A ⊇ E}|/

(
t

a

)
=

(
t−m

a−m

)
/

(
t

a

)
=

a · (a− 1) · · · (a−m+ 1)

t · (t− 1) · · · (t−m+ 1)
≥
(
a/e

t

)m

,

where the last step is derived from the well known inequality a! ≥ (a/e)a. Rearranging gives
m ≥ ln(1/δ)/ ln(et/a)). In the case where m > a, this argument does not work, because then(
t−m
a−m

)
= 0. Combining the two cases gives: m̂ ≥ m ≥ min(a + 1, ln(1/δ)/ ln(et/a))). Thus

R→
δ (avoid(t, a, b)) ≥ log(min(a+ 1, ln(1/δ)/ ln(et/a))).
For general deterministic protocols, we reuse the analysis of randomized protocols with δ = 0,

concluding that D→(avoid(t, a, b)) ≥ log(a+ 1).

The following lemma is a simple variation of Chernoff’s and Azuma’s inequalities; for complete-
ness, we present a proof in Appendix A.

Lemma 3 (Modified Azuma’s inequality). Let X1, . . . , Xn be {0, 1} random variables, with E[Xi |
X1 = x1, . . . , Xi−1 = xi−1] ≤ p for all i and all x1, . . . , xn ∈ {0, 1}n. Then

Pr

[
n∑

i=1

Xi ≥ np(1 + δ)

]
≤
(

eδ

(1 + δ)1+δ

)np

≤ e−
δ2

2+δ
np .

A number of versions of Brouwer’s fixed point theorem have been proven; in this paper, we will
use the following, which is equivalent to Corollary 2.15 of [Hat02].

Lemma 4 (Brouwer’s fixed point theorem). Every continuous map from a space homeomorphic to
an n dimensional-ball to itself has a fixed point.

4 Classical model

Theorem 5. For any δ ≤ 1/(2n), the space complexity for an algorithm solving mif(n, r) with

error ≤ δ is Sδ(mif(n, r)) ≥ Sdet(mif(
⌈
n
t

⌉
,
⌊
r
t

⌋
)), for t =

⌈
r logn

log 1
2δ

⌉
. If we apply the upcoming lower

bound from Theorem 11 on the deterministic space complexity of mif, we get:

Sδ(mif(n, r)) ≥ Ω

(√
min

(
r,
log(1/δ)

log n

)
+min

(
r,
log(1/δ)

log n

)
1

1 + log(n/r)

)

10

Proof. Let t be an integer satisfying
⌈
n
t

⌉⌊ rt ⌋ < 1
δ ; setting t =

⌈
r logn

log 1
2δ

⌉
suffices, because

log

(⌈n
t

⌉⌊ rt ⌋) ≤ ⌊r
t

⌋
log
⌈n
t

⌉
≤ r

t
log n ≤ r

⌈r log n/ log(1/2δ)⌉
log n ≤ log(1/2δ)

log n
log n < log

1

δ
.

Note also that because δ ≤ 1/(2n), t ≤ r, and
⌊
r
t

⌋
≥ 1.

Given a randomized algorithm Π that solves mif(n, r) with error ≤ δ on any input stream, we
will show how to construct a randomized algorithm Ψ which solves mif(⌈n/t⌉, ⌊r/t⌋) with the same

error probability. As there are only ⌈n/t⌉⌊r/t⌋ possible input streams for the mif(⌈n/t⌉, ⌊r/t⌋) task,
the probability (over randomness used by Ψ) of the event E than an instance A of Ψ succeeds on

any of the streams in [⌈n/t⌉]⌊r/t⌋ is ≥ 1−δ
⌈
n
t

⌉⌊ rt ⌋ > 0. Therefore, by fixing the random bits of Ψ to
some value for which the event E occurs, we obtain a deterministic protocol Φ for mif(⌈n/t⌉, ⌊r/t⌋).

We now explain the construction of Ψ given Π. Let f : [n] 7→ [⌈n/t⌉] be the function given by
f(x) = ⌊x/t⌋. For any y ∈ [⌈n/t⌉], we have that f−1(y) is a nonempty set of size ≤ t. The protocol
Ψ starts by initializing an instance A of Π, and sending it r − t⌊r/t⌋ arbitrary stream elements.

When Ψ receives an element e ∈ [⌈n/t⌉], it sends a sequence of t elements of [n] to A, namely,
the elements of f−1(e), in arbitrary order, repeating elements if |f−1(e)| < t. To output an element,
Ψ queries A to obtain i ∈ [n], and reports f(i). Assuming A did not fail, f(i) is guaranteed to
be a correct answer. If we assume for sake of contradiction that f(i) = e for some element e sent
to Ψ earlier, then A must have been sent all elements in f−1(e) – which implies that i ∈ f−1(e)
and that A gave an incorrect output, contradicting the assumption that f(i) = e. Thus, we have
proven that Ψ fails with no greater probability than Π, which is all that is needed to complete this
part of the proof.

Having shown that Sδ(mif(n, r)) ≥ Sdet(mif(
⌈
n
t

⌉
,
⌊
r
t

⌋
)), we now substitute in the lower bound

from Theorem 11.

Sδ(mif(n, r)) ≥ Sdet
(
mif

(⌈n
t

⌉
,
⌊r
t

⌋))
≥ Ω

(
max

(√⌊r
t

⌋
,

⌊r/t⌋
1 + log(⌈n/t⌉/⌊r/t⌋)

))
Because ⌊r/t⌋ = Θ

(
min

(
r, log(1/δ)logn

))
, and ⌈n/t⌉/⌊r/t⌋ = Θ(n/r), and Ω(max(a, b)) = Ω(a + b),

this simplifies to:

Sδ(mif(n, r)) = Ω

(√
min

(
r,
log(1/δ)

log n

)
+min

(
r,
log(1/δ)

log n

)
1

1 + log(n/r)

)

4.1 Upper bound: a sampling algorithm

Theorem 6. Algorithm 2 solves mif(n, r) with error ≤ δ on any fixed input stream, and uses

s ≤ min(r, log(1/δ)
log(n/r)) bits of space. (This assumes oracle access to O((s+ 1) log n) random bits.)

Proof. First, we observe that Algorithm 2 gives an incorrect output only when the input stream
σ = (e1, . . . , er) contains every element of L. Otherwise, either the first t elements of L are in σ,
and Lt+1 isn’t – in which case Line 8 returns Lt+1 – or there is some j ∈ [t] where Lj has not been
seen in the stream so far, in which case Line 6 correctly returns Lj . Given a fixed input stream
σ ∈ [n]r, the probability that Algorithm 2 fails is:

Pr[L ⊆ σ] =

(
|σ|
t+ 1

)/(n

t+ 1

)
≤
(

r

t+ 1

)/(n

t+ 1

)
=

r(r − 1) · · · (r − t)

n(n− 1) · · · (n− t)
≤
(r
n

)t+1

11

?

L1 Lt Lt+1

Figure 1: This diagram shows the behavior of Algorithm 2 on an example input. The
top row of squares corresponds to the set [n], ordered so that the leftmost squares
corresponds to the elements L1, L2, . . ., Lt+1 from Algorithm 2. In the top row, cells
contain a pink dot if the corresponding element has already been seen in the stream.
In the bottom row, each of the cells is shaded dark if the corresponding entry in the
vector x is equal to 1 – except for Lt+1, whose state Algorithm 2 does not track.

Algorithm 2 A streaming algorithm for mif(n, r) with error rate ≤ δ on any input stream

Let t = min(r, ⌊log(1/δ)/ log(n/r)⌋)

Initialization:
1: Let L = {L1, . . . , Lt+1} be a fixed sequence of elements in [n]t+1 without repetitions, chosen

uniformly at random. (This can be stored explicitly using O((t+1) log n) bits, or computed on
demand as a function of O((t+ 1) log n) oracle random bits.)

2: x← {0, . . . , 0}, a vector in {0, 1}t

Update(e ∈ [n]):
3: if ∃j ∈ [t] : Lj = e then
4: xj ← 1

Query:
5: if ∃j ∈ [t] : xj = 0 then
6: output: Lj

7: else
8: output: Lt+1

Thus Pr[L ⊆ σ] is ≤ δ when t = ⌊log(1/δ)/ log(n/r)⌋, and is equal to 0 when t = r, because no set
of size r can contain a set of size r + 1.

5 Adversarially robust model

Theorem 7. Any algorithm which solves mif(n, r) against adaptive adversaries with total error δ

requires ≥ log(
(

n
⌈r/2⌉

)
/
(n−⌈r/2⌉
⌊r/2⌋+1

)
) + log(1− δ) bits of space; or less precisely, Ω(r2/n+ log(1− δ)).

Proof. We prove this by reducing the communication task avoid(n, ⌈r/2⌉, ⌊r/2⌋ + 1) (see Section
3) to mif(n, r).

Say Alice is given the set A ⊆ [n] of size ⌈r/2⌉. They instantiate an instance X of the given
algorithm for mif(n, r), and runs it on the partial stream of length ⌈r/2⌉ containing the elements
of A in some arbitrary order. Alice then sends the state of X to Bob; since this is a public coin
protocol, all randomness can be shared for free. Bob then runs the following adversary against X ;
it queries X for an element b0, and then provides that element back to X , repeating this process
⌊r/2⌋+1 times to recover elements b0, b1, . . . , b⌊r/2⌋. The instance will fail to give correct answers to

12

this adversary with total probability ≤ δ. If it succeeds, then by the definition of the Missing Item
Finding problem, b0 /∈ A, b1 /∈ {b1} ∪ A, and so on; thus Bob can report B := {b0, . . . , b⌊r/2⌋+1} as
a set of ⌊r/2⌋+ 1 elements which are disjoint from A.

This avoid protocol implementation uses the same number of bits of communication as X does
of space. By Lemma 1, it follows X needs:

≥ log

((
n

⌈r/2⌉

)
/

(
n− ⌊r/2⌋ − 1

⌈r/2⌉

))
+ log(1− δ)

≥ ⌈r/2⌉(⌊r/2⌋+ 1)

n ln 2
+ log(1− δ) ≥ r2

4n ln 2
+ log(1− δ) ,

bits of space.

5.1 Upper bound: the hidden list algorithm

?c

J
L1 Lr Lr+1

Figure 2: This diagram shows the behavior of Algorithm 3 on an example input. The
top row of squares corresponds to the set [n], ordered so that the leftmost squares
corresponds to the elements L1, L2, . . ., Lr+1 from Algorithm 3. In the top row, cells
contain a pink dot if the corresponding element has already been seen in the stream.
In the bottom row, the letter C indicates the cell corresponding to Lc. Cells that are
shaded dark blue indicate the values contained in J . The third cell from the left is
included in J because, at the time the element L3 was added by the adversary, c was
less than or equal to 2.

Theorem 8. Algorithm 3 solves mif(n, r) against adaptive adversaries, with error δ, and can be

implemented using O(min(r,
(
1 + r2

n + ln 1
δ

)
· log r)) bits of space. (It assumes oracle access to

(r + 1) log n random bits.)

Proof. First, we observe that the only way that Algorithm 3 can fail is if it aborts. At any point in
the stream, the set J includes the intersection of the earlier elements from the stream, with the list
{Lc+1, . . . , Lr} of possible future outputs. The while loop ensures that the element Lc emitted will
neither be equal to the current element nor collide with any past stream elements (those in J). It
is not possible for c to go out of bounds, because each element in the stream can lead to an increase
in c of at most one; either immediately when the element arrives, if e = Lc; or delayed slightly, if
e ∈ {Lc+1, . . . , Lr}. Since the stream contains r elements, c will increase by at most r, to a value
of r + 1. Note that if c has reached the value r + 1, then the entire stream was a permutation of
{L1, . . . , Lr}, making Lr+1 is a safe output.

This algorithm needs log(r + 1) bits to store c, but the main space usage is in storing J . We
will show that |J | ≤ t with probability ≥ 1− δ, in which case J can be stored as either a bit vector
of length r, or a list of ≤ t indices in [r], using O(min(r, t log r)) bits of space.

We observe that after i−1 elements have been received (and up to i distinct elements emitted),
the probability that the ith element chosen by the adversary will be newly stored in J will be

13

Algorithm 3 An adversarially robust algorithm for mif(n, r) with error ≤ δ

Let t = min(r,
⌈
3 r2

n + ln 1
δ

⌉
)

Initialization:
1: Let L = {L1, . . . , Lr+1} be a fixed sequence of elements in [n]r+1 without repetitions, chosen

uniformly at random. (Assuming oracle access to O(r log n) random bits, the value of L can be
computed on demand, instead of stored.)

2: c← 1, an integer in the range {1, . . . , r + 1}
3: J ← ∅, a subset of {L1, . . . , Lr} of size ≤ t

Update(e ∈ [n]):
4: while e = Lc or Lc ∈ J do
5: c← c+ 1

6: if e ∈ {Lc+1, . . . , Lr} then
7: J ← J ∪ {e}
8: if |J | > t then
9: abort

Query:
10: output: Lc

≤ 2 r
n , no matter what the earlier elements were or what the adversary picks. If r ≥ n/2, this is

immediate. Otherwise, write Ei−1 for the set containing the first i−1 elements of the stream, ei for
the ith element, and let ci be the value of the variable c as of Line 6. Let Xi denote the indicator
random variable for the event that ei was not in J before, but has been added now.

Because the adversary has only been given outputs deriving from L≤ci := (L1, . . . , Lci), if
we condition on the random variable L≤ci , then the element ei and set Ei−1 are independent
of L>ci := {Lci+1, . . . , Lr}. Given Ei−1, the values X1, . . . , Xi−1 determine whether or not each
element of Ei−1 is in L>ci . Then, conditioning on L≤ci , ei, Ei−1, and X1, . . . , Xi−1, we have that
L>ci \Ei−1 is a set of size r− ci− |L>ci ∩Ei−1| chosen uniformly at random from [n] \L≤ci \Ei−1.
Thus, if ei /∈ L≤ci∪Ei−1, the probability that Xi = 1 is precisely the probability that ei is contained
in L>ci \ Ei−1, so:

Pr
[
Xi = 1 | (Xj)

i−1
j=1, ei, Ei−1, L≤ci , {ei /∈ L≤ci ∪ Ei−1}

]
=

r − ci − |L>ci ∩ Ei−1|
n− ci − |Ei−1 \ L≤ci |

≤ r − ci
n− ci − r

≤ r

n− r
≤ 2r

n
.

On the other hand, the event ei ∈ L≤ci ∪ Ei−1, implies Xi = 0 always. Together, these imply
Pr[Xi = 1 | (Xj)

i−1
j=1] ≤ 2r/n.

Then applying the (modified, see Lemma 3) Azuma’s inequality bound, we find that with

14

z := max{1, 3n
2r2

ln 1
δ}:

Pr[
∑
i∈[r]

Xi ≤
2r2

n
(1 + z)] ≤ e−

z
2+z

z 2r2

n

≤ e−z 2r2

3n since z ≥ 1

≤ e− ln 1
δ = δ . since z ≥ 3n

2r2
ln

1

δ

This implies that the probability that |J | exceeds 2r2/n+3 ln(1/δ) will be ≤ δ. Consequently, our
bound for the total space usage of the algorithm is:

O(log r) +O(min(r,

(
r2

n
+ ln

1

δ

)
log r))

= O(min(r,

(
1 +

r2

n
+ ln

1

δ

)
· log r))

While it is possible to reduce the space usage of Algorithm 3 by removing all elements from the
set J that are less or equal than c, this only changes the constant factor.

6 Zero error model

Theorem 9. All algorithms solving mif(n, r) with zero error on any stream require Ω(r2/n) bits
of space, in expectation over the randomness of the algorithm.

Proof. First, we prove that if there is a zero-error algorithm Φ for mif(n, r) using exactly s bits,
in expectation, then there is a communication protocol for avoid(n, ⌈r/2⌉, ⌊r/2⌋+ 1) using prefix-
encoded messages with an expected length of s bits. The construction is the same as for Theorem
7. Alice, on being given a set A ⊆ [n] of size ⌈r/2⌉, initializes an instance X of Φ, and runs it on an
input stream α of length ⌈r/2⌉ containing each element of A in some arbitrary order. Any random
bits used by X are shared publicly with Bob. They send the encoding of X’s state to Bob, who
queries X to find an element b0 /∈ α, updates X with b0, queries it to find b1 /∈ α ∪ {b0}, and so
on until Bob has recovered B = {b0, . . . , b⌊r/2⌋}. Because the algorithm is guaranteed to never fail
on any input stream, it must in particular succeed on Bob’s adaptively chosen continuation of α.
This ensures that B ∩A = ∅ holds with probability 1.

Next, we prove that any zero error randomized communication protocol Π for avoid(t, a, b)
requires ≥ ab/(t ln 2) bits in expectation. Following the argument from Lemma 6 of [CGS22], we
observe that there must exist a fixing of the public randomness of Π for which the expected number
of bits used when inputs A are drawn uniformly at random from

(
[t]
a

)
, is at least as large as when

Π is run unmodified. Let Υ be the deterministic protocol with this property, and let M be the set
of all messages sent by Υ. Each message m ∈ M has a length |m|, probability (over the random
choice of A) pm of being sent, and makes Bob output the set Bm. For all m ∈M , we have:

pm = Pr[m is sent] ≤ Pr[Bm is a correct output] = Pr[A ∩Bm = ∅] ≤
(
t− a

b

)
/

(
t

a

)
≤ 2−

ab
t ln 2 .

15

Let Υ(A) ∈M be the message sent by Υ for a given value of A. Then the entropy

H(Υ(A)) =
∑
m∈M

pm log
1

pm
= E

A∈([t]a)
log

1

pΥ(A)
≥ E

A∈([t]a)
ab

t ln 2
=

ab

t ln 2
.

By the source coding theorem,

E
A∈([t]a)

E|Υ(A)| ≥ H(Υ(A)) ≥ ab

t ln 2
.

Applying the above lower bound to the task avoid(n, ⌈r/2⌉, ⌊r/2 + 1⌋), we conclude that Φ

requires ≥ r2

4n ln 2 bits of space in expectation.

Theorem 10. There is an algorithm solving mif(n, r) with zero error against adaptive adversaries,
which uses O((1 + r2/n) log r) bits of space, in expectation over the randomness of the algorithm.

Proof. We use a slight variation of Algorithm 3, in which internal parameter t is instead set to
r. This ensures that the algorithm will never abort; the proof of Theorem 8 has established that
Algorithm 3 will then always give a correct output for the mif(n, r) task.

The counter c can be encoded in binary using at most ⌈log(r + 1)⌉ bits. We encode the set J
by concatenating the binary value of |J |, followed by the binary values of the indices i1, . . . , i|J | in
[r] for which Lik is equal to the kth smallest element of J . (As both the encodings of c and J are
prefix codes, so too is the encoding of the algorithm’s state formed by concatenating them.) The
total space S used by the algorithm (excluding random bits) is then:

S = ⌈log(r + 1)⌉+ ⌈log r⌉(1 + |J |) .

As in the proof of Theorem 8, let Xi be the indicator random variable for the event that the ith
element that the adversary chooses for the stream is stored in J ; we showed that for all i ∈ [r],
Pr[Xi = 1 | Xi−1, . . . , X1] ≤ r−1

n , which implies E[Xi] ≤ r−1
n . By linearity of expectation,

ES = ⌈log(r + 1)⌉+ ⌈log r⌉

1 + E
∑
i∈[r]

Xi

≤ ⌈log(r + 1)⌉+ ⌈log r⌉

(
1 +

r(r − 1)

n

)
= O((1 +

r2

n
) log r) .

7 Deterministic model

7.1 Lower bound: an embedded instance of Avoid

Theorem 11. Every deterministic streaming algorithm for mif(n, r) requires Ω(
√
r + r

1+log(n/r))
bits of space.

Proof. Let Σ be the set of states of the algorithm, and let sinit be the initial state. Let τ : Σ×[n]⋆ 7→
Σ be the transition function of the algorithm, where τ(s, e1, . . . , ek) = x means that if the algorithm
is at state s, and the next k elements in the stream are e1, . . . , ek, then after processing those
elements the algorithm will reach state x. For each partial stream σ ∈ [n]⋆, abbreviate τ(sinit, σ)

16

s00 s01 s10 s11

Gs,2 1

1

1 1

1 1

1 1

2

2 2

2

2

2 22

3

3

3

3

3

3

3 3

4

4

4

4

4

4

4 4

Gs,1

Gs,0

Figure 3: In the proof of Theorem 11, the quantities Fσ (defined in Eq. 1) are entirely
determined by the values of Σ[σ] and r− |σ|. More precisely, we have Fσ = GΣ[σ],r−|σ|,
where Gs,i := {ωx : ∃α ∈ [n]i : τ(s, α) = x}. This diagram shows the values of Gs,i for
Algorithm 1 solving the mif(4, 2) problem. The sets Gs,i are represented by the dark
squares in the array of four cells. The transition function between states is indicated
by the colored arrows; for example, green colored arrows (those emitting from squared
numbered with a 3) correspond to transitions where the next stream element is a 3, i.e,
from state s to state s′ = τ(s, 3).

as Σ[σ]. For each state s ∈ Σ, we associate the output ωs ∈ [n] which the algorithm would emit if
the state is reached at the end of the stream. (If there is no stream of length r leading to state s,
we let ωs be arbitrary.)

For each partial stream σ ∈ [n]⋆, let

Fσ = {i : ∃x ∈ Σ,∃α ∈ [n]r−|σ| : τ(Σ[σ], α) = x ∧ ωx = i} (1)

be the set of possible outputs of the algorithm when σ is extended to a stream of length r. Because
there are only |Σ| states, and only [n] possible output values, |F i

s | ≤ m, where m = min(|Σ|, n).
Let t, q be integers chosen later, so that

tq ≤ r −m/2q . (2)

We claim that there exists a partial stream σ ∈ [n]⋆ satisfying ∀α ∈ [n]t : |Fσ.α| ≥ 1
2 |Fσ|.

Such a state can be found by an iterative process. Let τ0 be the empty stream ϵ; for i = 1, 2, 3,
, if there exists α ∈ [n]t for which |Fτi.α| ≤ 1

2 |Fτi |, let τi+1 = τi.α. Otherwise, stop, and let σ = τi.
This process must terminate before i = q, because otherwise we would have |Fτq | ≤ m/2q ≤ r− qt.
Then letting γ ∈ [n]r−qt be a sequence of elements containing every element of Fτq , we observe that
the algorithm cannot possibly output a correct answer for the stream τq.γ. By the definition of
Fτq , we must have ωτq .γ ∈ Fτq ; but to be a correct missing item finding solution, we need ωτq .γ /∈ γ,
hence ωτq .γ /∈ Fτq , a contradiction. Thus, σ = τi for some i ≤ q − 1. Thus |σ| ≤ (q − 1)t ≤ r − t,
which ensures that the terms σ.α are streams of length ≤ r and therefore well defined. Finally, the
stopping condition of the process implies ∀α ∈ [n]t : |Fσ.α| ≥ 1

2 |Fσ|.
We will now construct a deterministic protocol for avoid(|Fσ|, t,

⌈
1
2 |Fσ|

⌉
) using ≤ log |Σ| bits of

communication. Alice, on being given a set A ∈
(
Fσ

t

)
, arbitrarily orders it to form a sequence α in

(Fσ)
t; and then sends the state s′ = τ(Σ[σ], α) to Bob. This can be done using log |Σ| bits of space.

Bob uses the encoded state to find Fσ.α, by evaluating ωτ(s′,β) for all sequences β ∈ [n]|σ|−t, and

reports the first
⌈
1
2 |Fσ|

⌉
elements of this set as B. This protocol works because as claimed above,

we are guaranteed |Fσ.α| ≥ |Fσ|; and furthermore, Fσ.α must be disjoint from A; if it is not, then
there exists some continuation of σ concatenated with α which leads the algorithm to a state z with

17

ωz ∈ A, contradicting the correctness of the MIF protocol. Finally, applying the communication
lower bound from Lemma 1, we find

log |Σ| ≥ 1

ln 2
t

⌈
1

2
|Fσ|

⌉
/|Fσ| ≥ t/(2 ln 2) (3)

We now determine values of t and q satisfying Eq. 2. We can set

q = ⌈1 + log(m/r)⌉ and t =

⌊
1

q

(
r − m

2q

)⌋
We must have m ≥ r + 1, as otherwise |Fϵ| ≤ m ≤ r, in which case we could easily make the
algorithm give an incorrect output by running it on a stream γ ∈ [n]r which contains all elements
of Fϵ. Thus log(m/r) ≥ 0, and hence q ≥ 1, making t well defined. Since m = min(|Σ|, n), we are
also guaranteed log |Σ| ≥ log(r + 1). Combining this with Eq. 3 gives:

log |Σ| ≥ max

(
log(r + 1),

1

2 ln 2

⌊
1

q

(
r − m

2q

)⌋)
≥ max

(
1,

1

2 ln 2

⌊
r

2q

⌋)
since 2q ≥ 2m/r and r ≥ 1

≥ 1

1 + 2 ln 2
· r
2q

since min(1, (z − 1)/y) ≥ z

1 + y

≥ r

10 + 5 log(m/r)
. since 1 + 2 ln 2 ≤ 5/2 (4)

As m = min(|Σ|, n), we have m ≤ |Σ|, so

log |Σ| ≥ r/5

2 + log |Σ| − log r
=⇒ (log |Σ|)2 + (2− log r) log |Σ| − r/5 ≥ 0 .

Solving the quadratic inequality gives:

log |Σ| ≥

√
r

5
+

(
1− log(r)

2

)2

−
(
1− log(r)

2

)
≥

{√
r/5 if r ≥ 4

0 otherwise

As log |Σ| ≥ log(r+ 1) ≥
√
r/5 also holds for r ≤ 4, it follows that log |Σ| ≥

√
r/5 for all values of

r. Combining this result, Eq. 4, and the inequality m ≤ n, we conclude:

log |Σ| ≥ max

(√
r

5
,

r

10 + 5 log(n/r)

)
= Ω

(√
r +

r

1 + log(n/r)

)
.

Note: instead of associating “forward” looking sets of outputs Fs with each state s ∈ Σ, we could
instead use “backward” looking states Bs defined (roughly) as [n]\{i : ∃σ leading to s with i ∈ σ}.

7.2 Upper bound: the iterated pigeonhole algorithm

Theorem 12. Algorithm 4 is a deterministic algorithm that solves mif(n, r) using O(
√
r log r +

r log r
logn) bits of space.

18

2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

1 6 11 16 21
a=(3)

x = (1,0,0,1,0)

ℓ=2

Figure 4: This diagram shows the behavior of Algorithm 4, with s = 5 and t = 2, on
an example input. The pink circles and diamonds mark the elements currently covered
by the stream. Cells shaded dark gray are those which are no longer possible outputs
due to the current values of ℓ and a. Cells shaded light green are no longer possible
outputs due to the value of the vector x. Cells shaded white are possible output values.
The algorithm proceeds in t phases; in this example, for the first phase, it maintained
a bit vector tracking which of the s rows of the set [n] contained an element from the
stream; after the first five elements (1, 10, 11, 17, 24 in some order) arrived, only one
row was left available, and the algorithm proceeded to the second phase – maintaining
a bit vector x that records which columns within the chosen row may be unavailable.

Algorithm 4 A deterministic algorithm for mif(n, r)

Let s, t be integers satisfying st ≤ n, and t(s− 1) ≥ r.

Initialization:
1: x← (0, . . . , 0) is a vector in {0, 1}s.
2: (ℓ, a)← (1, 0) is an element of

⋃
j∈[t]{j} × {0, . . . , sj − 1}

Update(e ∈ [n]):
3: Let i←

(⌊
(e− 1)/sℓ−1

⌋
mod s

)
+ 1

4: xi ← 1
5: if ℓ < t and there is exactly one y ∈ [s] : xy = 0 then
6: x← (0, . . . , 0)
7: ℓ← ℓ+ 1
8: a← a+ (y − 1)sℓ−1

Query:
9: Let i be the least value in [s] for which xi = 0

10: output: a+ (i− 1)sℓ−1 + 1

Proof. First, we establish that the variables (ℓ, a) of the algorithm stay in their specified bounds.
The condition in Line 5 ensures that ℓ will not be increased beyond t. At the time Line 8 is
executed, a < sℓ−1; since y ∈ [s], it follows a + (y − 1)sℓ−1 < (1 + (s − 1))sℓ−1 ≤ sℓ, so the pair
(ℓ, a) stays in

⋃
j∈[t]{j} × {0, . . . , sj − 1}.

Next, we establish that the algorithm is correct; that the output from Line 10 does not overlap

19

with current stream e1, . . . , ek. For each element ej in the stream, let ℓj be the value of ℓ at the
time the element was added (i.e., at the start of the Update function). For all h ∈ [t], define
Ch := {j ∈ [t] : ℓj = h} to indicate the elements for which ℓj = h. Because Line 5 only triggers
when x has one zero entry, and x is reset to the all zero vector immediately afterwards, and each
new element sets at most one entry of x to 1 (Line 4), we have |Ch| ≥ s − 1 for all h less than or
equal to the current value of ℓ.

Let c = a + (i − 1)sℓ−1 be the current output of the algorithm (Line 10), minus 1. Note that
c ≤ st − 1 ≤ n − 1, so the output is in [n]. The value of c can be written in base s as (c1, . . . , ct),
so that c =

∑t
j=1 cjs

j−1. For h less than the current value of ℓ, ch is equal to the value of y at the
time the condition of Line 5 evaluated to true; in other words, at that time, xch = 0. Now, for each
j ∈ Ch, consider the value ej − 1 written in base s as (b1, . . . , bt). When ej was added, Line 3 set i
equal to bh, and so Line 4 ensured xbh = 1. Since xch = 0 held afterwards, when the condition of
Line 5 evaluated to true, it follows bh ̸= ch. This implies ej − 1 ̸= c holds for all j ∈ Ch. A similar
argument will establish that for j ∈ Cℓ, we have ej − 1 ̸= c; since C1 ∪ . . . ∪ Cℓ contains the entire
stream so far, it follows the current output of the algorithm does not equal any of the {ej}kj=1, and
is thus correct.

Finally, we determine values of s and t which for which the algorithm uses little space. The
vector x can be stored using s bits; since there are

∑t−1
i=0 s

i ≤ st possible values of (ℓ, a), this
algorithm can be implemented using ≤ s+ t log s+ 1 bits of space.

Now let

q = min
(√

r log(r + 1), log n
)

and t =

⌊
q

log(r + 1)

⌋
and s =

⌈r
t

⌉
+ 1 ,

Because r ≥ log(r + 1), and log n ≥ log(r + 1), it follows t ≥ 1. This implies s ≤ r + 1. Then
t(s− 1) = t⌈r/t⌉ ≥ r, and

st ≤ (r + 1)⌊q/ log(r+1)⌋ ≤ (r + 1)q/ log(r+1) ≤ 2q ≤ n ,

so the values of s and t satisfy the required conditions st ≤ n and t(s − 1) ≥ r. With these
parameters, the space usage of the algorithm is:

s+ t log s+ 1 ≤
⌈r
t

⌉
+ 2 +

⌊
q

log(r + 1)

⌋
log(

⌈r
t

⌉
+ 1)

≤ r

⌊q/ log(r + 1)⌋
+ 3 +

q

log(r + 1)
log(r + 1)

≤ 2r log(r + 1)

q
+ q + 3

= max

(
2
√

r log(r + 1),
2r log(r + 1)

log n

)
+min

(√
r log(r + 1), log n

)
+ 3

= O

(√
r log r +

r log r

log n

)
.

8 White box model

Theorem 13. Every streaming algorithm for mif(n, r) which has error δ ≤ 1/ (16n)2 logn+7 =

1/2Ω(logn)2 against white-box adversaries requires Ω
(

r
(logn)4

)
bits of space.

20

s00 s01 s10 s11

νs,2 1

1

1 1

1 1

1 1

2

2 2

2

2

2 22

3

3

3

3

3

3

3 3

4

4

4

4

4

4

4 4νs,0

νs,1

Figure 5: In the proof of Theorem 13, the quantities νσ,i defined as fixed points of
Eq. 6 are shown for the state diagram of Algorithm 1 for the problem mif(4, 2). The
distributions νσ,i are represented by the gray bar charts in each rectangle; for example,
the distribution νs01,1 has weight 0.5 on value 1 and weight 0.5 on value 3. The transition
function between states is indicated by the colored arrows; for example, green colored
arrows (those emitting from squared numbered with a 3) correspond to transitions
where the next stream element is a 3, i.e, from state s to state s′ = τ(s, 3).

This proof relies on the following Lemma, whose proof we will defer for later.

Lemma 14. Let ν be a distribution on [n], and p = 1+ 1/ log(n). Let δ ≤ 1
n3 . Let R be a random

variable with values in Ω. If there is a map M : [n]t×Ω→△[n] so that Ex∼νt,RM(x,R) = ν, and:

Pr
x∼νt,R

[
∥M(x,R)∥pp ≤ Dp−1∥ν∥pp ∧ (∀j ∈ [t] : M(x,R)(xj) ≤ δ)

]
≥ 1− 1

26n2
(5)

Then log | range(M)| ≥ t
29D(logn)2

− 2 log(n)− 6.

Proof. Proof of Theorem 13.
We can safely assume that r ≥ log n+ 1, as for any r = O((log n)3) the claimed lower bound is

trivial.
Let ℓ = ⌈log n+ 1⌉, t =

⌊
r
ℓ

⌋
, and let r̂ = tℓ. We can use a protocol for mif(n, r) to solve

mif(n, r̂) instead, by padding the start of the stream with a fixed sequence of r − r̂ arbitrary
inputs. Let A be this new algorithm.

Let Σ be the set of all states of A, and let τ : Σ× [n]→ Σ be the randomized transition function
between states. For each state s ∈ Σ, let ωs be the distribution over [n] from which the final output
value is drawn when the final state of the algorithm is s. (If s can never occur at the end of the
stream, we let ωs be arbitrary.) To each pair (s, i) ∈ Σ×{0, . . . , ℓ}, we will associate a distribution
νs,i over [n]. These distributions are recursively defined; if i = ℓ, we let νs,ℓ = ωs, i.e., the output
distribution for state s. For i < ℓ, define fs,i : △[n]→△[n] as:

f(ϕ) = Ex∼ϕtEs′∼τ(s,x)νs′,i+1 =
∑
x∈[n]t

∏
i∈[t]

ϕ(xi)

∑
s′∈Σ

Pr[τ(s, x) = s′]νs′,i+1 (6)

Because this function is continuous, and △[n] is homeomorphic to an (n− 1)-dimensional ball, we
can apply Brouwer’s fixed point theorem (Lemma 4) to find a distribution νs,i ∈ △[n] satisfying
νs,i = fs,i(νs,i).

With the distributions νs,i as defined above, we can define an adversary which, we can prove, will
trick A into outputting an element that was present in the stream with probability ≥ 1

(16n)2 logn+7 .

21

The adversary proceeds in ℓ rounds: for each i ∈ {0, . . . , ℓ − 1}, they identify the current state si
of the algorithm, sample α ∼ νsi,i, and send α to A.

Let p = 1+ 1/ log n; the quantity ∥νs,i∥pp is a measure of the concentration of the output distri-

bution associated with s and i. Assume for sake of contradiction that log |Σ| ≤ t
29(logn)2

−2 log n−6.
Then we shall prove by induction, for all i ∈ {0, . . . , ℓ}, the statement P (i) that for all s ∈ Σ, if
∥νs,i∥pp ≥ 2i(p−1)/np−1, then the probability that A will give an incorrect answer when the remaining

(ℓ−i)t elements of the stream are provided by the adversary is ≥ 1/(16n)2(ℓ−i)+3). The base case of
the induction, at i = ℓ, holds vacuously, because ∥νs,i∥pp ≥ 2i(p−1)/np−1 ≥ 2(⌈logn⌉+1)(p−1)/np−1 ≥
2p−1 > 1 is never true.

Now, for the induction step. Assume P (i+1) holds; we would like to prove P (i) is true. Assume
the current state s of the algorithm satisfies ∥νs,i∥pp ≥ 2i(p−1)/np−1. The adversary samples x ∼ νts,i
and sends it to the algorithm, which transitions to the state s′ ∼ τ(s, x). If it is the case that

Pr[ν too concentrated] := Pr[
∥∥νs′,i+1

∥∥p
p
≥ 2(i+1)(p−1)/np−1] ≥ 1

27n2
, (7)

then, by applying P (i+ 1), it follows:

Pr[A fails] ≥ Pr[A fails | ν too concentrated] Pr [ν too concentrated]

≥ 1

(16n)2(ℓ−i−1)+3
· 1

27n2
≥ 1

(16n)2(ℓ−i)+3

It remains to prove P (i+1) assuming Eq. 7 does not hold. If that is the case, letM : [n]t×Ω→△[n]
be the randomized map in whichM(x,R) = νs′,i+1 where s

′ is randomly chosen according to τ(s, x);
the random variable R encapsulates the randomness of τ . Note that Ex∼νts,i,R

M(x,R) = νs,i, by

the definition of νs,i. Applying Lemma 14 to M , νs,i, p, D = 2, and δ = 1/n3 we observe that
since we have assumed that |Σ| ≥ log | range(M)| is smaller than the Lemma guarantees, and
Ex∼νts,i

EM(x) = νs,i holds, it must be that Eq. 5 is incorrect. Thus:

Pr
x∼νt

[
∥M(x,R)∥pp ≤ 2p−1∥νs,i∥pp ∧ (∀j ∈ [t] : M(x,R)(xj) ≤

1

n3
)

]
≤ 1− 1

26n2

and since Eq. 7 does not hold, we have

Pr
x∼νt

[∥∥νs′,i+1

∥∥p
p
≤ 2p−1∥νs,i∥pp

]
≥ Pr

x∼νt

[∥∥νs′,i+1

∥∥p
p
≤ 2(i+1)(p−1)/np−1

]
≥ 1− 1

27n2

which implies:

Pr
x∼νt,s′∼τ(s,x)

[
∃j ∈ [t] : νs′,i+1(xj) ≥

1

n3

]
≥ 1

27n2
.

The definition of νs′,i+1 ensures that νs′,i+1 is precisely the distribution of output values if the
algorithm and adversary are run for t(ℓ− i− 1) steps starting from state s′. The probability that

22

the algorithm fails because the final output overlaps with x is then

Pr
x∼νts,i,s

′∼τ(s,x),y∼νs′,i+1

[∃j ∈ [t] : xj = y] = Ex∼νts,i,s
′∼τ(s,x) Pr

y∼νs′,i+1

[∃j ∈ [t] : xj = y]

= Ex∼νts,i,s
′∼τ(s,x)

∑
j∈[t]

νs′,i+1(xj)

≥ Ex∼νts,i,s
′∼τ(s,x)max

j∈[t]
νs′,i+1(xj)

≥ 1

n3
Pr

x∼νts,i,s
′∼τ(s,x)

[
max
j∈[t]

νs′,i+1(xj) ≥
1

n3

]
≥ 1

n3
· 1

27n2
=

1

27n5

Thus, the failure probability of the algorithm as of (s, i) is≥ 1/(27n5) ≥ 1/(16n)5 ≥ 1/(16n)2(ℓ−i)+3;
this completes the proof of P (i).

With the proof by induction complete, the statement P (0) implies that for any s ∈ Σ, because
∥νs,0∥pp ≥

1
np−1 always holds, the probability that A gives an incorrect answer when run against the

adversary on a stream of length tℓ = r̂ is ≥ 1/(16n)2ℓ+3 ≥ 1
(16n)2 logn+7 . This contradicts the given

fact that A’s error is less than this, so the assumption that log |Σ| ≤ t
29(logn)2

− 2 log n− 6 must be

incorrect; and instead we must have

log |Σ| ≥ t

29(log n)2
− 2 log n− 6 ≥ ⌊r/⌈log n+ 1⌉⌋

29(log n)2
− 2 log n− 6

= Ω(r/(log n)3 − log n) . (8)

To handle the case of small r, we note that a white-box algorithm B for mif(n, r) with error
δ ≤ 1/ (16n)2 logn+7 can be used to solve the avoid(n, r, 1) communication task. Here, Alice, on
being given a set A ⊆

(
[n]
r

)
, runs an instance of B on a sequence containing the elements of A

in some order; she then sends the state of the instance to Bob, who queries the instance for an
output, and reports that value. This communication protocol has the same error probability as B;
by Lemma 2, it requires

≥ min

(
log(r + 1), log

log 1/δ

log en/r

)
≥ log(min(r + 1, 2 log n+ 7)) ≥ 1

bits of communication; thus B requires at least one bit of state. Since max(1, z/a−b) ≥ z/(a(1+b)),
this lets us find a more convenient corollary for Eq. 8; that log |Σ| = Ω(r/(log n)4).

We will now prove Lemma 14. It relies on the following technical claim about probability
distributions; which roughly implies that when a distribution is split into a small number of regions
on which it is approximately uniform, a specific sum of powers of the weight and density of each
region has a lower bound.

Claim 15. Define mϕ(K) to be the minimum value of distribution ϕ on the set K, so mϕ(K) :=
mini∈K ϕ(i).

Let p > 1, β ∈ (0, 1], and n ≥ 2. For any distribution ν on [n], there exists a collection of

23

disjoint sets {Hi}i∈J for some |J | ≤ 3
β log n where:

∑
i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥

(1− 1
n)

p

2β(2p−1)|J |(p−1)p/(2p−1)n(p−1)2/(2p−1)
(9)

≥
(1− 1

n)
p

2β(2p−1)|J |(p−1)n(p−1)2
. (10)

Furthermore, we have maxi∈J mν(Hi) ≥ 1/(n2β), and mini∈J mν(Hi) ≥ 1/n2.

Proof. (Of Lemma 14.) In order to avoid awkward expressions like M(x,R)(i), we define µ̃x :=
M(x,R). We also use the notation a+ := max(0, a). Throughout the proof we shall assume n ≥ 2,
as in the case n = 1 it is easy to prove that no such map M exists.

This proof has two main stages. The first establishes that, for a small fraction of vectors x
drawn from νt, the distribution µ̃x will probably have significant mass in the same area as νt, while
not being much more concentrated (according to ∥·∥pp) than µ̃x, and avoids x. The second part will

show that such distributions can avoid only small fraction of vectors sampled from νt; together,
these stages imply the range of M must be large.

Given a real random variable W , with EW ≥ y, and 0 ≤W ≤ ηy, we have

Pr[W ≥ αy] = 1− Pr[W ≤ αy] ≥ 1− Pr[(ηy −W) ≥ (η − α)y] ≥ 1− ηy − y

(η − α)y
≥ 1− α

η
. (11)

Let β ∈ (0, 1] be a parameter chosen later. Apply Claim 15 to ν with this β and the given p,
producing disjoint sets {Hi}i∈J . For any i ∈ J , we have EX∼νt,Rµ̃X = ν(Hi). Now applying
Jensen’s inequality to convex functions of the form f(a) = ((a− b)+)p gives:

EX∼νt,R((µ̃X(Hi)− δ|Hi|)+)p ≥ ((ν(Hi)− δ|Hi|)+)p which implies

EX∼νt,R[
∑
i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p] ≥

∑
i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p .

Next, for any x ∈ [n]t,∑
i∈J

mν(Hi)
p−1((µ̃x(Hi)− δ|Hi|)+)p) ≤ max

i∈J
mν(Hi)

p−1 ≤ (4n)p
∑
i∈J

mν(Hi)
p−1(ν(Hi)− δ|Hi|)p) ,

because as noted in Claim 15, for the i maximizing mν(Hi), we have ν(Hi) ≥ |Hi| 1
n2β
≥ |Hi|

2n , so

ν(Hi) − δ|Hi| ≥ |Hi|(1
2n −

1
n3) ≥ 1/4n. Note that (4n)p ≤ 42(n1+1/ logn) = 25n. Applying Eq. 11

thus yields:

Pr
X∼νt,R

∑
i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p ≥(

1− 1

n

)∑
i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p

 ≥ 1

n
· 1

(4n)p
≥ 1

25n2
.

Intersecting this event with that of Eq. 5 implies the probability that all three of the following
conditions hold is ≥ 1

26n2 :

(a) : ∥µ̃X∥pp ≤ Dp−1∥ν∥pp
(b) : ∀j ∈ [t] : µ̃X(Xj) ≤ δ

(c) :
∑
i∈J

mν(Hi)
p−1((µ̃X(Hi)− δ|Hi|)+)p ≥ (1− 1

n
)
∑
i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p .

24

By the averaging argument, there must exist a value R′ ∈ Ω for which, when R = R′, the above
three conditions hold with at least the same probability. In other words, when replacing µ̃X with
µX := M(x,R′), the conditions still holds with probability ≥ 1/26n2. Now let G := {µx : x ∈
[n]t satisfies (a),(c)} and define Lπ := {i ∈ [n] : π(i) ≤ δ}. Therefore,

1

26n2
≤ Pr

X∼νt
[µX ∈ G ∧ (∀j ∈ [t] : µX(Xj) ≤ δ)]

=
∑
y∈G

Pr
X∼νt

[µX = µy ∧ (∀j ∈ [t] : µX(Xj) ≤ δ)]

≤
∑
y∈G

Pr
X∼νt

[(∀j ∈ [t] : µy(Xj) ≤ δ)]

=
∑
y∈G

∏
j∈[t]

Pr
Xj∼ν

[µy(Xj) ≤ δ] =
∑
y∈G

(ν(Lµy))
t (12)

We will now prove an upper bound on ν(Lµy) for any given y ∈ G. Observe that for any sequence

a1, . . . , aℓ of nonnegative real numbers,
∑ℓ

i=1 a
p
i ≥ (

∑ℓ
i=1 ai)

p/ℓp−1; this follows from Hölder’s
inequality. As the sets Hi \ Lµy are disjoint,

∥µy∥pp =
∑
i∈[n]

µy(i)
p ≥

∑
i∈J

µy(Hi \ Lµy)
p

|Hi \ Lµy |p−1
.

The definition of Lµy implies µy(Hi \ Lµy) ≥ max(0, µy(Hi) − δ|Hi|). Also, because the minimum
value of ν on Hi \ Lµy is at least mν(Hi), we have

|Hi \ Lµy | ≤
ν(Hi \ Lµy)

mν(Hi)
≤

1− ν(Lµy)

mν(Hi)

Therefore,

∥µy∥pp ≥
∑
i∈J

((µy(Hi)− δ|Hi|)+)p

(1− ν(Lµy))
p−1/mν(Hi)p−1

=
1

(1− ν(Lµy))
p−1

∑
i∈J

mν(Hi)
p−1((µy(Hi)− δ|Hi|)+)p

≥ 1− 1/n

(1− ν(Lµy))
p−1

∑
i∈J

mν(Hi)
p−1((ν(Hi)− δ|Hi|)+)p by condition (c)

≥ 1− 1/n

(1− ν(Lµy))
p−1

∑
i∈J

mν(Hi)
p−1

((
1− 1

n

)
ν(Hi)

)p

The last step uses the fact that for all i ∈ J , δ|Hi| ≤ 1
2n3 |Hi| ≤ 1

n |Hi|minj∈
⋃

Hi
ν(j) ≤ 1

nν(Hi). We
now apply condition (a), and divide both sides by ∥ν∥pp:

Dp−1 ≥
∥µy∥pp
∥ν∥pp

≥ (1− 1/n)p+1

(1− ν(Lµy))
p−1

∑
i∈J

mν(Hi)
p−1 (ν(Hi))

p

∥ν∥pp

≥ (1− 1/n)p+1

(1− ν(Lµy))
p−1

(1− 1/n)p

2β(2p−1)(2β log n)(p−1)n(p−1)2
. by Claim 15

25

Rearranging this inequality to isolate ν(Lµy) reveals:

ν(Lµy) ≤ 1− 1

D

(
(1− 1/n)(2p−1)/(p−1)

2β(2p−1)/(p−1)(2β log n)n(p−1)

)
(13)

The right hand side is close to its minimum when β = p− 1 = 1/ log n: Thus:

ν(Lµy) ≤ 1− 1

D

(
(1− 1/n)2+logn

2(2+logn)/ logn(2(log n)2)2logn/ logn

)
≤ 1− 1

D

(
(1− 1/n)2+logn

16 · 22/ logn

)
1

(log n)2

≤ 1− 1

29D(log n)2

since (1− 1/n)2+logn/(16 · 22/ logn) is increasing in n, and when evaluated at n = 2 gives 2−9. Now
we are in a position to simplify Eq. 12; with this upper bound.

1

26n2
≤
∑
y∈G

(
1− 1

29D(log n)2

)t

= |G|
(
1− 1

29D(log n)2

)t

≤ |G| exp
(
− t

29D(log n)2

)
.

Since G is a subset of range(M), we have log | range(M)| ≥ log |G|; rearranging the above to isolate
|G| gives:

log | range(M)| ≥ log |G| ≥ t

29(ln 2)D(log n)2
− log(26n2)

≥ t

29D(log n)2
− 2 log(n)− 6 .

Finally, we prove Claim 15:

Proof. For all i ∈ Z≥0, let wi := 2iβ/n2, and let Hi := {j ∈ [n] : ν(j) ∈ [wi, wi+1). Define
J := {i ∈ Z≥0 : Hi ̸= ∅}. We first prove some basic properties of J and the Hi.

• If i ≥
⌊
3
β log n

⌋
, then wi ≥ 2

⌊
3
β
logn

⌋
β
/n2 > 2

2
β
(logn)β

/n2 ≥ 1; since maxj∈[n] ν(j) ≤ 1, it

follows such Hi must be empty. Thus J ⊆ {0, . . . ,
⌊
3
β log n

⌋
− 1}, and hence |J | ≤ 3

β log n.

• Because minj∈[n] ν(j) ≥ 1/n, we are guaranteed that for some i with wi ≥ 1/(n2β), Hi ̸= ∅.
Thus maxi∈J mν(Hi) ≥ 1/(n2β). Similarly, mini∈J mν(Hi) ≥ mini∈J wi ≥ 1/n2.

Now, to prove the main part of the result, Eq. 10. Let K = [n] \
⋃

i∈J Hi = {j ∈ [n] : ν(j) <
1/n2}. First, we observe that the contribution of the j ∈ K to ∥ν∥pp is small and can be easily be
accounted for:

n
1

np
≤
∑
j∈[n]

ν(j)p =
∑

j∈
⋃

i∈J Hi

ν(j)p +
∑
j∈K

ν(j)p ≤
∑

j∈
⋃

i∈J Hi

ν(j)p + n

(
1

n2

)p

≤
∑

j∈
⋃

i∈J Hi

ν(j)p +
1

np

∑
j∈[n]

ν(j)p .

26

This implies ∥ν∥pp ≤ (1− 1/np)−1
∑

j∈
⋃

i∈J Hi
ν(j)p ≤ (1− 1/n)−1

∑
j∈

⋃
i∈J Hi

ν(j)p.

Now, writing ni = |Hi|, we have niwi ≤ ν(Hi) ≥ 2βniwi, and so:∑
i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥

(1− 1/n)
∑

i∈J w
p−1
i (wini)

p∑
i∈J ni(2βwi)p

=
1− 1/n

2βp

∑
i∈J w

2p−1
i np

i∑
i∈J w

p
i ni

. (14)

We shall later need the following inequality:∑
i∈J

niwi ≥ 2−β
∑

j∈
⋃

i∈J Hi

ν(j) ≥ 2−β(
∑
j∈[n]

ν(j)−
∑
j∈K

ν(j)) ≥ 2−β

(
1− 1

n

)
. (15)

With this and properties of the ni, we can lower bound Eq. 14 by using Hölder’s inequality several
times: ∑

i∈J
wp
i ni =

∑
i∈J

(
w2p−1
i np

i

) p
2p−1

(
n
−(p−1)
i

) p−1
2p−1

≤

(∑
i∈J

w2p−1
i np

i

) p
2p−1

(∑
i∈J

n
−(p−1)
i

) p−1
2p−1

by Hölder

≤

(∑
i∈J

w2p−1
i np

i

) p
2p−1

|J |
p−1
2p−1 since ni ≥ 1 (16)

∑
i∈J

wini =
∑
i∈J

(
w2p−1
i np

i

) 1
2p−1

(
n
1/2
i

) 2p−2
2p−1

≤

(∑
i∈J

w2p−1
i np

i

) 1
2p−1

(∑
i∈J

n
1/2
i

) 2p−2
2p−1

by Hölder

≤

(∑
i∈J

w2p−1
i np

i

) 1
2p−1

(∑
i∈J

ni

)1/2

|J |1/2

2p−2
2p−1

by Cauchy-Schwarz

≤

(∑
i∈J

w2p−1
i np

i

) 1
2p−1

n
p−1
2p−1 |J |

p−1
2p−1 since

∑
i∈J

ni ≤ n. (17)

Multiplying Eq. 16 by Eq. 17 raised to the (p− 1)st power gives:(∑
i∈J

wp
i ni

)(∑
i∈J

wini

)p−1

≤

(∑
i∈J

w2p−1
i np

i

)
|J |

p−1
2p−1 (n

p−1
2p−1)p−1(|J |

p−1
2p−1)p−1 ,

which implies ∑
i∈J w

2p−1
i np

i∑
i∈J w

p
i ni

≥
(∑

i∈J wini

)p−1

|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

≥
(1− 1

n)
p−1

2β(p−1)|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

.

Substituting this into Eq. 14 gives:∑
i∈J

(mν(Hi))
p−1 (ν(Hi))

p

∥ν∥pp
≥

(1− 1
n)

p

2β(2p−1)|J |
(p−1)p
2p−1 n

(p−1)2

2p−1

.

27

9 Random start and pseudo-deterministic models

Theorem 16. The space needed for an algorithm in the random-start model to solve mif(n, r)
against adaptive adversaries, with error ≤ δ ≤ 1

6 , satisfies s ≥ SPD
1/3 (n, ⌊r/(2s+ 2)⌋).

This theorem implies that if it is the case that SPD
1/3 (mif(n, r)) = Ω(rc/polylog(n)) for some

constant c > 0, then it follows that SRS
1/6(mif(n, r)) = Ω(rc/(1+c)/ polylog n). Specifically, if s =

SRS
1/6(mif(n, r)), then Theorem 16 would imply s ≥ SPD

1/3 (n, ⌊r/(2s+ 2)⌋) = Ω((r/s)c/ polylog(n));

multiplying both sides by sc and raising them to the 1/(c+1)st power gives s ≥ Ω(rc/(1+c)/ polylog(n)).

Proof. Let Σ be the set of all states of the random-start algorithm A, and let D be the distribution
of the initial states of the algorithm. Write B ∼ A to indicate that B is an instance of A, i.e., with
initial state drawn from distribution D. Let ℓ = 2⌈log(|Σ|)⌉+ 2, and let t = ⌊r/ℓ⌋. For any partial
stream σ of elements, and instance B of A, we let B(σ) be the sequence of |σ| outputs made by B
after it processes each element in σ.

Consider an adversary E which does the following. Given σ the stream it has already passed
to the algorithm, and ω the sequence of outputs that A produced in response to σ, the adversary
checks if there exists any x ∈ [n]t for which

∀y ∈ [n]t : Pr
B∼A

[B(σ.x) = ω.y | B(σ) = ω] ≤ 2

3
. (18)

If so, it sends x to A, appends x to σ and the returned t elements to ω, and repeats the process.
If no such x exists, then the adversary identifies the z ∈ [n]t which maximizes:

Pr
B∼A

[B(σ.z) is incorrect | B(σ) = ω] . (19)

and sends it to the algorithm. (The adversary gives up if either the algorithm manages to give a
valid output after z, or after it has sent ℓ sets of t elements to the algorithm.)

We claim that if log |Σ| < SPD
1/3 (mif(n, t)), then E makes the algorithm fail with probability

≥ 1/6. There are two ways that E can be forced to give up: if it tries more than ℓ− 1 times to find
a point where there is no x ∈ [n]t satisfying Eq. 18, or if the z it sends fails to produce an error.

Assume that the adversary finds a value of x satisfying Eq. 18, for each of the ℓ tries it makes.
Let x1, . . . , xℓ ∈ [n]t be these values, and let y1, . . . , yℓ ∈ [n]t be the outputs of the algorithm. By
applying Eq. 18 repeatedly, we have:

Pr
B∼A

[B(x1.xℓ) = y1.yℓ] = Pr
B∼A

[B(x1.xℓ) = y1.yℓ | B(x1.xℓ−1) = y1.yℓ−1]

· Pr
B∼A

[B(x1.xℓ−1) = y1.yℓ−1 | B(x1.xℓ−2) = y1.yℓ−2]

· Pr
B∼A

[B(x1) = y1]

≤ (2/3)ℓ .

Let C ⊆ Σ be the set of initial states of the algorithm for which the adversary finds a sequence
satisfying Eq. 18, ℓ times. Because the algorithm is deterministic after the initial state is chosen,
each s ∈ C has a corresponding transcript (σs, ωs) ∈ [n]tℓ× [n]tℓ that occurs when E is run against
an instance of A started from s. Therefore,

Pr
s∼D

[s ∈ C] =
∑
s∈C

Pr
s′∼cD

[s = s′] ≤
∑
s∈C

Pr
B∼A

[B(σs) = ωs]

≤ |Σ|
(
2

3

)ℓ

≤ 2log |Σ|
(
2

3

)2 log(|Σ|)+2

≤
(
2

3

)2

≤ 1

2

28

Thus, the chance that E fails to find a point where no x satisfying Eq. 18 exists is ≤ 1
2 .

To bound the second way in which E can fail, we let (σ, ω) be a partial transcript of the
algorithm for which no x ∈ [n]t satisfies Eq. 18. Assume the probability that z produces an error
is < 1/3. Then we have:

∀z ∈ [n]t,∃yz ∈ [n]t : Pr
B∼A

[B(σ.z) = ω.yz | B(σ) = ω] ≥ 2

3
(20)

∀z ∈ [n]t : Pr
B∼A

[B(σ.z) is correct | B(σ) = ω] ≥ 2

3
. (21)

These conditions together imply that ω.yz is a correct mif(n, r) output sequence for σ.z. As a result,
we can use A’s behavior after (σ, ω) to construct a pseudo-deterministic algorithm Ψ for MIF (n, t).
To initialize Ψ, we sample an initial state B ∼ A conditioned on the event that B(σ) = ω, and
then send the elements of σ to B. After this, when Ψ receives an element e, we send e to B, and
report the element B outputs as the output of Ψ. By Eqs. 20 and 21, the sequence of outputs
produced by Ψ on any input x in [n]t will, with probability ≥ 2/3, be the (valid) output yz. Thus,
Ψ solves MIF (n, t) with ≤ 1/3 error – which, under the assumption that log |Σ| < SPD

1/3 (mif(n, t)),

is impossible. Thus the z chosen by the adversary makes the algorithm err with probability ≥ 1/3,
conditional on it having found (σ, ω) with no x ∈ [n]t satisfying Eq. 18. The probability that the
the adversary succeeds is then ≥ 1/3 · 1/2 = 1/6; this contradicts the assumption that A has error
≤ 1/6 against any adversary, which implies that we must instead have log |Σ| ≥ SPD

1/3 (mif(n, t)).

We now present a random-start algorithm whose total space with random bits included improves
slightly on Algorithm 3.

Theorem 17. Algorithm 5 solves mif(n, r) against adaptive adversaries, with error δ, and can be

implemented using O
((√

r + r2

n

)
log n

)
bits of space, including all random bits used.

c=2
J={3}

x=(1,0,1)L1 Lt

Figure 6: This diagram shows the behavior of Algorithm 5 on an example input, if we
were to set w = 3 and t = 4. The top row of squares corresponds to the set [n]. In
the top row, cells contain a pink dot if the corresponding element has already been
seen in the stream. For the bottom row, we have assumed for ease of presentation that
(L1, L2, L3, L4) = (1, 2, 3, 4). The four wide blocks correspond to the sets {w(Lj − 1)−
1, . . . , wLj} for each j ∈ [4]. The blocks shaded dark blue (here only one) indicate the
blocks whose indices are contained in J . The vector x tracks which elements in the
current block (Lc at c = 2) were seen in the stream. For indices > c, J tracks which
blocks contain elements from the stream. If the stream elements in this example had
arrived in a different order (say, elements 4 and 6 arriving first), then J might have had
the value {2, 3}.

Proof. By the kth block, we refer to the set Bk = {w(Lk − 1) + 1, . . . , wLk}.

29

Algorithm 5 An adversarially robust, “random-start” algorithm for mif(n, r) with error ≤ δ

Assume r < n/32 and δ ≥ e−r/6 – otherwise, use Algorithm 1

Let w =
⌊
min(

√
r log n, n

32r ,
r

6 ln 1/δ)
⌋
, the block size

Let t = ⌈2r/w⌉

Initialization:
1: Let L = {L1, . . . , Lt} be a sequence of t elements from [⌊n/w⌋] without repetitions, chosen

uniformly at random.
2: c← 1, an integer in the range {1, . . . , t}
3: J ← ∅, a subset of [t]
4: x← (0, . . . , 0), a vector in {0, 1}w

Update(e ∈ [n]):
5: Let h = ⌈e/w⌉
6: if ∃j : Lj = h and j > c then
7: J ← J ∪ {j}
8: if h = Lc then
9: xe−w(h−1) ← 1

10: if x = (1, 1, . . . , 1) then
11: c← c+ 1
12: while c ∈ J do
13: c← c+ 1

14: x← (0, 0, . . . , 0).

15: if c > t then
16: abort

Query:
17: Let j be the least value in [w] for which xj = 0.
18: output: w(Lc − 1) + j

First, we observe that unless Algorithm 5 aborts, it will always output a valid value. At all
times, the integer c indicates a value Lc for which the set Bc is not entirely contained by the stream.
The contents of the vector x are updated by Lines 8 and 9 to ensure that iff some e ∈ Bc was given
by the stream since the last time c was changed, then the vector entry xe−w(c−1) corresponding
to element e has value 1. On the other hand, when the value of c changes, Lines 11 through 13
ensure that for the new value of c, no element of Bc was in the stream so far. This works because
the variable J includes (by Lines 6 and 7) all blocks Bd for d > c which contain a stream element.
Thus, after each update, Bc always contains at least one element which was not in the stream so
far; and since the vector x tracks precisely which elements in Bc were in the stream, the query
procedure for Algorithm 5 always gives a valid result.

Next, we evaluate the probability that Algorithm 5 aborts. This only happens if c > t. The
variable c can increase in two different ways: on Line 13, which can happen at most once every w
elements when the vector x fills up; and on Line 13, which occurs at most once for each element in
J . Thus c ≤ 1 + ⌊r/w⌋+ |J |.

In much the same way that Theorem 8 bounded |J | for Algorithm 3, we prove here that

30

|J | ≤ t− 1−⌊r/w⌋ with probability 1− δ. Without loss of generality, assume that the adversary is
deterministic, and picks the next element of the stream as a function of the outputs of the algorithm
so far. Denote the elements of the stream by e1, . . . , er – these are random variables depending
on the algorithm’s random choices. Say that i − 1 elements have been processed so far, and the
algorithm receives the ith element. Let Xi be the indicator random variable for the event that
the size of J will increase. Matching Line 5, let hi = ⌊ei/w⌋. Abbreviate H<i := {h1, . . . , hi−1},
L≤ci := {L1, . . . , Lci}, L>ci := {Lci+1, . . . , Lt}; here ci is the value of the variable c as of Line 5.
Then by Line 6, Xi = 1 iff hi ∈ L>ci \H<i.

Critically, H<i and hi only depend on what the adversary has seen so far – algorithm outputs
whose computation has only involved L1, . . . , Lci – and not on the contents of L>ci . Conditioning
on (X1, . . . , Xi−1) does constrain L>ci , but only in that it fixes the value of L>ci ∩ H<i. If we
condition on L≤ci and (X1, . . . , Xi−1) (and hence also on hi and H<i), then the set L>ci \H<i is a
uniform random subset of [⌊n/w⌋] \L≤ci \H<i. The probability that hi is contained in L>ci \H<i

and will be added to J is then:

Pr[Xi = 1 | X1, . . . , Xi−1, L≤ci] =

{
0 hi ∈ H<i ∪ L≤ci

t−ci−|H<i∩L>ci |
⌊n/w⌋−ci−|H<i\L≤ci

| otherwise

≤ t− |H<i ∩ L>ci |
⌊n/w⌋ − |H<i \ L≤ci |

≤ t

⌊n/w⌋ − i
≤ 2t

⌊n/w⌋
.

In the last step, we used the inequality i ≤ r ≤ 16r ≤ 1
2⌊n/w⌋. Taking the (conditional) expectation

over L≤ci yields E[Xi | X1, . . . , Xi−1] ≤ 2t/⌊n/w⌋ ≤ 4tw/n Applying the variant on Azuma’s
inequality, Lemma 3, with z = max(1, 3n

4rtw ln 1
δ) gives:

Pr

[
r∑

i=1

Xi ≥ r
4tw

n
(1 + z)

]
≤ exp(−z2/(2 + z)r

4tw

n
)

≤ exp(−4zrtw

3n
) ≤ δ .

We now observe that:

4rtw(1 + z)

n
≤ 8rtw

n
max

(
1,

3n ln 1
δ

2rtw

)
defn. of z

≤ max

(
8rtw

n
, 6 ln(1/δ)

)
≤ max

(
32r2

n
, 6 ln(1/δ)

)
since t ≤ 4r

w

≤ max
(r

w
,
r

w

)
since w ≤ n

32r
and w ≤ r

6 ln(1/δ)

≤ t− ⌊r/w⌋ . since t ≥ 2r

w

This implies that at the end of the stream,

Pr [|J | ≥ t− ⌊r/w⌋] ≤ Pr

[
|J | =

r∑
i=1

Xi ≥
4rtw(1 + z)

n

]
≤ δ ,

thereby proving that the algorithm aborts with probability ≤ δ.

31

Finally, we compute the space used by the algorithm. The set L can be stored as a list of
integers, using t log n bits; the counter c with log n bits; set J with t bits; and vector x with w bits.
The total space usage s of the algorithm is then:

s ≤ t(1 + log n) + w + log n (22)

≤ 10r log n

w
+ w since t ≤ 4r

w
and log n ≤ 2r log n

w
(23)

≤ 20r log n

w
since w ≤

√
r log n (24)

≤ max

(
40
√

r log n,
600r2 log n

n
, 240 log

1

δ
log n

)
(25)

= O

(√
r log n+

r2

n
log n+ log

1

δ
log n

)
. (26)

Algorithm 5 requires r < n/32 and δ ≥ e−r/6. If either of these conditions do not hold, then

it is better to use Algorithm 1 instead. When r > n/32, we have r2

n log n = Ω(n log n), and when

δ ≤ e−r/6, we have log 1
δ log n = Ω(r log n), so using Algorithm 1 here does not worsen the upper

bound from Eq. 26. Consequently, by choosing the better of Algorithm 5 and Algorithm 1, we can
obtain the upper bound from Eq. 26 unconditionally.

It is possible to reduce the space cost of this even further when r is sufficiently smaller than
n, by replacing the logic used to find a missing element inside a given block. When r = O(log n),
one can obtain an O

(
r1/3(log r)2/3

)
-space algorithm by changing the block size to be ŵ = Õ(n/r2)

instead of w, and running a nested copy of Algorithm 4 configured for mif(ŵ, r2/3(log r)1/3) inside
each block instead of tracking precisely which elements in {w(Lc− 1)+1, . . . , wLc} have been seen
before.

10 Acknowledgements

We thank Amit Chakrabarti and Prantar Ghosh for many helpful discussions.

References

[AB+22] Miklós Ajtai, , Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P.
Woodruff, and Samson Zhou. The white-box adversarial data stream model. In Proc.
41st ACM Symposium on Principles of Database Systems, page 15–27, 2022.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+ 1) vertex
coloring. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
767–786, 2019.

[ACS22] Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring in the
streaming model. In Proc. 54th Annual ACM Symposium on the Theory of Computing,
pages 261—-274, 2022.

[BJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A frame-
work for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium
on Principles of Database Systems, page 63–80, 2020.

32

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proc.
39th ACM Symposium on Principles of Database Systems, pages 49–62. ACM, 2020.

[CGS22] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring
for graph streams. In Proc. 13th Conference on Innovations in Theoretical Computer
Science, pages 37:1–37:23, 2022.

[Fei19] Uriel Feige. A randomized strategy in the mirror game. arXiv preprint
arXiv:1901.07809, 2019.

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
Deterministic Streaming. In Proc. 20th Conference on Innovations in Theoretical
Computer Science, volume 151, pages 79:1–79:25, 2020.

[GIPS21] Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of np search problems. In Proc. 36th Annual
IEEE Conference on Computational Complexity, pages 36:1–36:22, 2021.

[GS18] Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc.
10th Conference on Innovations in Theoretical Computer Science, pages 36:1–36:14,
2018.

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. Available on-
line at https://pi.math.cornell.edu/~hatcher/AT/ATpage.html. Accessed 2022-
07-14.

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer.
Adversarially robust streaming algorithms via differential privacy. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive
inputs? In Proc. 45th Annual ACM Symposium on the Theory of Computing, pages
121–130, 2013.

[JST11] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proc. 30th ACM Symposium
on Principles of Database Systems, pages 49–58, 2011.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive
streaming from oblivious streaming using the bounded storage model. In Advances
in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume
12827 of Lecture Notes in Computer Science, pages 94–121. Springer, 2021.

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff,
and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for sam-
plers and finding duplicates in streams. In Proc. 58th Annual IEEE Symposium on
Foundations of Computer Science, pages 475–486, 2017.

[MN22] Boaz Menuhin and Moni Naor. Keep that card in mind: Card guessing with limited
memory. In Proc. 13th Conference on Innovations in Theoretical Computer Science,
pages 107:1–107:28, 2022.

33

https://pi.math.cornell.edu/~hatcher/AT/ATpage.html

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends Theor.
Comput. Sci., 1(2):117–236, 2005.

[NY19] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Trans.
Alg., 15(3):35:1–35:30, 2019.

[Tar07] Jun Tarui. Finding a duplicate and a missing item in a stream. In Proc. 4th In-
ternational Conference on Theory and Applications of Models of Computation, pages
128–135, 2007.

[WZ22] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams
and sliding windows via difference estimators. In Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science, pages 1183–1196, 2022.

A Appendix

Proof. In this proof of Lemma 3, we essentially repeat the proof of the Chernoff bound, with slight
modifications to account for the dependence of Xi on its predecessors. Here t is a positive real
number chosen later.

Pr

[
n∑

i=1

Xi ≥ np(1 + δ)

]
= Pr

[
et

∑n
i=1 Xi ≥ etnp(1+δ)

]
≤ E[et

∑n
i=1 Xi]/etnp(1+δ)

= e−tnp(1+δ)E[etX1E[etX2 · · ·E[etXn | X1 = X1, . . . , Xn−1 = Xn−1] | X1 = X1]

≤ e−tnp(1+δ)E[etX1E[etX2 · · ·E[etXn−1(pet + (1− p)) | X1 = X1, . . . , Xn−2 = Xn−2] | X1 = X1]

≤ e−tnp(1+δ)E[etX1E[etX2 · · ·E[etXn−2(pet + (1− p))2 | X1 = X1, . . . , Xn−3 = Xn−3] | X1 = X1]

≤ e−tnp(1+δ)(pet + (1− p))n =

(
pet + (1− p)

etp(1+δ)

)n

≤

(
ep(e

t−1)

etp(1+δ)

)n

=

(
ee

t−1

et(1+δ)

)np

since 1 + x ≤ ex

=

(
eδ

(1 + δ)1+δ

)np

picking t = ln(1 + δ)

≤ exp

(
− δ2np

2 + δ

)
. since x− (1 + x) ln(1 + x) ≤ −x2/(2 + x)

34

	Introduction
	Our results and contributions

	Related work
	Preliminaries
	Models for streaming algorithms
	Lemmas

	Classical model
	Upper bound: a sampling algorithm

	Adversarially robust model
	Upper bound: the hidden list algorithm

	Zero error model
	Deterministic model
	Lower bound: an embedded instance of Avoid
	Upper bound: the iterated pigeonhole algorithm

	White box model
	Random start and pseudo-deterministic models
	Acknowledgements
	Appendix

