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Abstract

The current best construction algorithms for perfect hash functions and dictionaries are efficient but
rely on randomization, with a few exceptions. There do exist deterministic constructions for perfect
hash functions (and by extension, static dictionaries), with near-linear construction time, but these are
not competitive for low latency access, requiring more than the minimum one input-dependent read
operation for the worst case in the cell probe model to evaluate a perfect hash function.

For integers u and n, we describe a deterministic construction of a simple perfect hash function from
[2u] to [O(n)] for any set S of n keys in [2u], whose evaluation requires exactly one dependent load
of an O(logn)-bit region, and whose total space usage is O(n logn) bits. Construction takes O(nu logn)
time. Our key contribution in this is a faster deterministic selection of standard ”odd-multiply-shift” hash
function mapping a set S in [2u] of size n to [O(n2)] with no more collisions than expected; similar results
with a smaller range are possible using the ”odd-multiply-add-shift” and ”odd-carryless-multiply-shift”
families.

1 Introduction

A static dictionary is a data structure constructed from a set P of n distinct key-value pairs in a universe
U×V , supporting item retrieval queries:1

Query(x) For some key x ∈U , if (x,v) ∈ P, report the value v, otherwise ⊥.

A common (but by no means the only) way to construct a static dictionary with O(1)-worst-case access
time in the word-RAM or cell probe models is to construct a perfect hash function f from U to {0, . . . , t−1},
for some t = O(n), which is injective on S := {x : (x,v) ∈ P}, and use it to index into an array containing,
for each x ∈ S, the value (x,v) at index f (x).2

Simple and randomized O(n)-time constructions for O(1)-query time perfect hash functions and static
dictionaries have been known since [FKS84], but the development of near-linear time deterministic per-
fect hash and dictionary constructions has taken longer, culminating in [Ruz08a]’s algorithm that uses
O(SORT(n) log logn) time in certain models, where SORT(n) is the time needed to sort an array of n entries.
However, these dictionaries vary in how efficient they are to query, and usually require reading multiply (but
still O(1)) values from memory.

The best possible worst-case number of dependent memory read operations for a query – distinct words
or cache-lines that are read, excluding O(1) words that are read on every query – for a static dictionary using
O(npolylog(n, |U |))-space dictionary is two, and for a perfect hash function using similar space is one.
[Standard space lower bound proves this for hash functions; need to cite the appropriate dictionary

!!!
*No affiliation, undeclared location. Contact: research@mstoeckl.com
1Another common definition is to have a static dictionary support membership queries, which just report whether a key is inside

the given set.
2Note that constructing a perfect hash function from a dictionary is also easy to do.



cell probe lower bound.]
This paper describes a deterministic algorithm to identify an odd-multiply-shift (OMS) hash function

whose collision count (Def: 1.5) is not more than expected for a random OMS hash function, and uses that
to describe a perfect hash function for a given set S of n elements from U = {0,1}u to {0, . . . ,n−1} which
can be constructed in O(nu logn) time, and requires making only one dependent probe to memory. Using
this one can construct an efficiently evaluable dictionary with key universe U = {0,1}u.

1.1 Definitions and main results

We identify {0,1}u with {0, . . . ,2u−1}, define x div y = ⌊x/y⌋, and ⊙ to be the carryless-multiplication/F2-
polynomial-multiplication operator.

Definition 1.1. A hash familyH of functions from {0,1}u to {0,1}s is α-approximately universal if for all
distinct x,y ∈ {0,1}u, for h chosen uniformly at random fromH:

Pr[h(x) = h(y)]≤ α/2s .

A 1-approximately universal hash family is universal. (See also: [CW79].)

Definition 1.2. The Odd-Multiply-Shift (OMS) hash familyHOMS from {0,1}u to {0,1}s contains all func-
tions:

ha : x 7→ (ax mod 2u div 2u−s) for odd a ∈ {1,3,5, . . . ,2u−1}

This family is 2-approximately universal (see [DHKP97, Lemma 2.4] and Lemma 2.3).

Definition 1.3. The Odd-Multiply-Add-Shift (OMA) hash family HOMA from {0,1}u to {0,1}s contains
all functions:

ha,b : x 7→ ((ax+b) mod 2u div 2u−s) for odd a ∈ {1,3, . . . ,2u−1} and all b ∈ {0, . . . ,2u−s−1}

This family is universal (Lemma 3.2); other variants of it have different properties[Tho15, Section 3.3].

Definition 1.4. The Odd-Carryless-Multiply-Shift (OCM) hash family HOCM from {0,1}u to {0,1}s con-
tains all functions:

ha,b : x 7→ (a⊙ x mod 2u div 2u−s) for odd a ∈ {1,3, . . . ,2u−1}

This family is universal (Corollary 4.3); it can be considered a variant of Toeplitz hashing[Kra94].

Definition 1.5. For a set S ∈ {0,1}u and function f : {0,1}u → {0,1}s, the collision count κ( f ,S) of f
is the number of unordered pairs of distinct x,y ∈ S for which f (x) = f (y). Calculated differently, it is
κ( f ,S) := ∑z∈{0,1}s

(| f−1(z)∩S|
2

)
.

Theorem 1.6. Given integers n,u,s, for any subset S ⊆ {0,1}u of size n, there is an algorithm taking
O(nu logn) time (in Word-RAM, Definition 1.9) and O(nu) additional space to identify an multiply-shift
hash function f : {0,1}u→{0,1}s with collision count κ( f ,S)≤ 2

2u

(n
2

)
.

Theorem 1.7. A variant of the algorithm of Theorem 1.6 can, with the same time and space, select a
multiply-shift-add function f with collision count κ( f ,S)≤ 1

2u

(n
2

)
.

Theorem 1.8. A variant of the algorithm of Theorem 1.6 can, with the same time and space, select a
carryless-multiply-shift function f with collision count κ( f ,S)≤ 1

2u

(n
2

)
.
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Theorem 8.3. For n,u positive integers with u ≥ logn, implementing Algorithm 8 using either OMA or
OCM hashes will construct a minimal perfect hash function f for a n-element subset S in {0,1}u to [n], using
O(nu logn) time, O(nu) auxiliary space; the hash function f itself uses ≤ 5.66n⌈logn⌉+O(u+ logn) bits
of space and can be evaluated with exactly one dependent read of a ⌈logn⌉-bit word; there are O(u+ logn)
bits of parameters that are unconditionally used). OMS hashes can also be used but double the bound on
the space usage.

1.2 Notation

In this paper, we interpret log(x) as the base-2 logarithm of x, ln(x) as the base-e logarithm, and [k) :=
{0,1, . . . ,k− 1}. We sometimes interpret bit strings {0,1}u as base-2 integers in [2u). 1{event} is the
function which has value 1 iff event holds, and 0 otherwise. For two strings of bits p,q, their concatenation
is p.q; for example, (1,2,3).(7) = (1,2,3,7).

Bit strings interpreted as little-endian; (0,1,1,1) = 14; the ith (counting from zero) entry of the bit string
is the ith (counting from zero) least significant bit of the base two representation of the value.

The function: BREV reverses the bits in an integer
The function: TZCNT : {0,1}u→ {0, . . . ,u} counts the number of trailing/least-significant zeros of the

input
The binary operator a sel [b,c) outputs a mod 2c div 2b, and thus selects least significant bits b through

c−1 of the binary representation of a. Note that a sel [b,c) also equals a div 2b mod 2c−b.
In this paper, we consider two models of computation. On actual computers, the input and output of

a hash function are often small (≤ 256 bits) and the speed of operations on word-size quantities may vary
significantly, so even when n = 230, factor of logn differences in asymptotic bounds may be outweighed by
hardware differences.

Definition 1.9. Unit cost word-RAM (with constant-time multiplication and carryless multiplication); this
is similar to the executed instruction count of a program.

Definition 1.10. Finite-tape Turing machine: this imposes a high penalty on random access to memory and
measures costs with bit level precision.

1.3 Applicability

Randomized dictionary and perfect hash function construction algorithms can have much better perfor-
mance, in construction time, size, and query time, than the current best known deterministic constructions.
In general, the results of this paper are not competitive for practical use, but there are a few exceptions where
determinism may be worth the slower construction. For example, if the system being used does not have any
reliable and private source of randomness, or any strong cryptographic primitives, and the input set of keys
is chosen adversarially. Deterministic perfect hash function constructions are also necessarily reproducible
and may be useful in file formats which need fast random access and encoders that with reproducible output
and strong worst-case construction time guarantees. The hash function selection algorithms in this paper
use the method of conditional expectations and can always find a function with no more than the expected
number of collisions, even if only one function in the family has this property; random sampling can only re-
liably find a function with a property if a large enough fraction of functions have the property. This may lead
to very slight space improvements for designs that already use one of the OMS, OMA, or OCM families.

1.4 Related work

[FKS84] (FKS) introduced a simple and general randomized construction for a static dictionary (equiva-
lently, for a perfect hash function) on a set S of n keys, using O(n) expected time (in a unit-cost-word-RAM
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model) to construct, O(n) words of space, and supporting worst-case O(1)-time queries (assuming small
enough keys that can be hashed in O(1) time). They also observed that when using specific families of hash
functions, their dictionary can be deterministically constructed in O(n3 logu) time, for u-bit keys. This is
close to optimal: [FK84, Theorem 2] proved that when u ≥ (2+ ε) logn, any perfect hash function from
{0,1}u to [O(n)] requires ≥ n loge+ log logu−O(logn) bits of space. (On the other hand, O(1)-access
time dictionaries can be built which do not require any additional space over that needed to store the un-
compressed key/value pairs[FN93]; by compressing keys, one can obtain down to [cite] space.) Later work

!!![cite] has gotten close to these bounds.
!!!While most research on dictionaries over the last fifty years has focused on randomized, dynamic dic-

tionaries or randomized perfect hash function constructions, a few papers have found results for static deter-
ministic dictionaries (equivalently, perfect hash functions) which get closer to the randomized performance
of [FKS84]. [cite: no competitive dynamic deterministic dictionaries] Among these are: [Ram95],

!!!which found that with the odd-multiply-shift hash family, [FKS84]’s construction time can be improved
to O(n2u); [AN96], giving an O(nu(logn)4) time construction; [HMP01], which assuming one can con-
struct and efficiently evaluate an explicit linear code with high rate and relative distance ([doable with

!!!mediocre parameters]), gives an O(n logn) time construction. Slightly later, a series of work ending in
[Ruz08b, Ruz08a, Ruz09] identified improved dictionary constructions which run in O(??) time.

There are a few main directions to randomized constructions of perfect hash functions with O(1) worst-
case or expected query time. The FKS scheme uses a secondary table of hash functions; this can be
compressed ([cite: something via AlonN96]) to reduce the number of bits needed to O(??). [cite] has

!!!
!!!hash-displace-and-compress. [cite] observes splitting-and-filtering-approach – if majority of keys handled

!!!immediately, remainder can afford more space/time expensive construction.3 A randomized static dictio-
nary design which could promise even lower access latency (two parallel reads, instead of sequential) is to
use two hash functions h1, h2 to query locations in an array, and combine the values A[h1(k)] and A[h2(k)]
in the array to produce the value associated with k [CHM92]. This is similar to Cuckoo hashing, and there
have been a variety of improvements to the scheme since then[cite the notable improvements]; this is sim-

!!!ilar to Cuckoo hashing. Unfortunately, the hash families required for this are not well as well understood
as the plain universality criterion required for the FKS scheme: [cite], and no near-linear derandomized

!!!construction is known. [Any O(n) bit constructions?]
!!!
!!![Note: the publicly available ”Constructing Efficient Dictionaries in Close to Sorting Time” paper

is dated from July 2009 and may not match R09b, so its citation may need adjustment.]
!!![Find Turing machine time bounds for carryless multiplication / F2 polynomial multiplication,

since this influences asymptotic OCM evaluation time]
A few open problems related to this work are listed in Section 9.

3Splitting the dictionary into large ”easy” and small ”hard” regions, in some way, is a common theme in both old and recent
theoretical work on dynamic dictionary constructions (see for example [BCF+21]), second perhaps only to the use of queues to
reduce risk and spread work between operations.
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Source Output
Construction time

(word-RAM)
Evaluation time

(Turing)
Space

Mod-by-prime [FKS84,
Lemma 2]

O(n2 logu) O(n3 logu), O(u log logn) O(logn+ logu)

Odd-multiply-
shift[Ram95]

O(n2) O(n2u) O(u logu) O(u)

OMA or OMS, this pa-
per

O(n2) O(nu logn) O(u logu) O(u)

OCM, this paper O(n2) O(nu logn) O(u(log logn)1+o(1)) O(u)
Linear code bit
extraction[HMP01]

nO(1) O(n logn), O(u logu) ? O(logn+ logu)

Multiplicative [Ruz08b,
Section 3.1]

O(n2) O(n2 logn) O(u logu) O(u)??

Multiplicative [Ruz08b,
Section 3.2]

O(n4) O(nu(logn)2) O(u logu) O(u+ logn)

Shift-plus-multiply,
[Ruz09], exact inversion
count

O(2u/2+logn) O(??) O(u log logn) O(logn)

Shift-plus-multiply,
[Ruz09], approx. inv.
count

O(2
u/2+ logn

log 3
2 ) O(??) O(u log logn) O(logn)

[AN96] ???

Table 1: Deterministic construction of hash functions for universe reduction on input universe {0,1}u; with word size
w≥ u. This table shows primitives, which may either stand alone or be combined or iterated to obtain better bounds.
TODO: double check and document all of these

Row Source
Construction time

(word-RAM)
Memory usage

(bits)
Maximum indirect

read count
1 OMS/OMA/OCM and single

displacement, this paper
O(nu logn) O(n logn+u) 1

2 Linear code bit extrac-
tion and trie via double
displacement[HMP01]

O(n logn) † O(n logn+ logn logu) ≥ 2 and O(1)

3 Shift-plus-multiply
with iterated relaxed
displacement[Ruz08a, Ruz09]

O(n???) ≥ 3 and O(1)

4 Tri-level [AN96] O(nu(logn)4) O(n+ logn logu) 2
5 Bi-level [FKS84] deterministic O(n3u) 1

Table 2: Deterministic perfect hash function constructions (from [2u] to [O(n)]), with construction time calculated
assuming word size w≥ u. †: requires pre-calculation of a linear code. TODO: double check and document all

2 Properties of the odd-multiply-shift (OMS) hash family

Observation 2.1 (On multiplication mod 2k). For integers i ≤ k and nonzero x ∈
[
2k
)
, assume x = z2i for

some odd integer z. If a is a uniformly random integer in
[
2k
)

(or just in
[
2k−i

)
), then the distribution of
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ax mod 2k is the uniform distribution over multiples of 2i in [2k). If a is a uniformly random odd integer in[
2k
)

(or just in
[
2k−i

)
), then ax mod 2k is distributed uniformly randomly over odd multiples of 2i in

[
2k
)
.4

Lemma 2.2. Let j ≤ k≤ l be nonnegative integers. Let I be an interval containing exactly of 2k elements in
Z/2lZ. For any integer x ∈ Z/2lZ, the set S of values (x+2 jZ)/2lZ intersects I exactly 2k− j times.

Proof. Split I into 2k− j consecutive disjoint intervals I1, . . . , I2k− j each of length 2 j. Each interval Ii for some
i contains one element for each equivalence class mod 2 j and so intersects S exactly once.

The following result has long since been known[DHKP97, Lemma 2.4], but we reprove it here for
completeness. [TODO: move most of this (and most of the paper) into an appendix to keep the main

!!!line focused on the interesting parts]

Lemma 2.3. The OMS hash family from {0,1}u to {0,1}s is 2-approximately-universal.

Proof. Consider any pair x,y of distinct values in {0,1}u. Since x− y ̸= 0, let z, i be integers with z odd so
that x− y mod 2u = z2i. Let a be a uniformly random odd integers in [2u) and let ha be the corresponding
OMS hash function from {0,1}u to {0,1}s. Since x− y mod 2u = z2i, we can write x = xh2i + xl and
y = yh2i + yl where xl = yl ∈ [2i), xh ∈ [2u−i), and yh = (xh + z) mod 2u−i. We have two cases:

1. If i≥ u− s, then

ha(x) = (axh2i +axl) mod 2u div 2u−s

= (axh2i +axl)div 2u−s mod 2s

= (axh mod 2u−i)2i−u−s +((axl)div 2u−s mod 2s) .

Since a is odd, the map z 7→ az mod 2u−i is a bijection. Since xh ̸= yh, (axh mod 2u−i) ̸= (ayh mod
2u−i). On the other hand, axl = ayl . Consequently, ha(x) ̸= ha(y), so

Pr[ha(x) = ha(y)] = 0≤ 2/2s .

2. If i < u− s, then the value of Pr[ha(x) = ha(y)] may vary depending on the precise values of x and
y. We will prove a uniform and slightly looser upper bound. For any given value of a, we have two
subcases. If ay mod 2u ≥ ax mod 2u, then ha(x) = ha(y) implies a(y− x) mod 2u < 2u−s, since both
ay mod 2u and ax mod 2u must fall in the same contiguous interval of length 2u−s for floor-division
by 2u−s to produce the same value. Symmetrically, if ax mod 2u ≥ ay mod 2u, then ha(x) = ha(y)
implies a(x− y) mod 2u < 2u−s.5 Thus:

Pr[ha(x) = ha(y)]≤ Pr[a(x− y) mod 2u ∈ {0, . . . ,2u−s−1}∪{2u−2u−s +1, . . . ,2u−1}] . (1)

Since z is odd, and a is chosen uniformly randomly over odd values in
[
2b
)
, the distribution of az2i is

uniform over odd multiples of 2i in [2u). The set M2u−s,2u = {0, . . . ,2u−s−1}∪{2u−2u−s+1, . . . ,2u−
1} is a subset of a contiguous interval of length 2u−s+1 in Z/2uZ, so by Lemma 2.2, the set of possible
values of az2i has at most 2u−s+1/2i+1 intersections with M2u−s,2u , out of 2u−i+1 possible options.
Therefore,

Pr[ha(x) = ha(y)]≤
2u−s+1

2i+12u−i+1 =
2
2s

Note that the first case only uses the fact that the hash function parameter a is odd. The second case
requires a uniform distribution, and would also work (with minor adjustment) if a were chosen uniformly at
random over all integers in

[
2b
)

instead of just the odd integers.
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!!![Can we construct a tight input x,y for every u and s?]
We will later need to efficiently bound the probability that a given pair x,y of distinct elements collides

under an OMS hash function ha, where ha is chosen from a specific family of conditional distributions.
Define

M2u−s,2u := {0, . . . ,2u−s−1}∪{2u−2u−s +1, . . . ,2u−1} ;

this is equivalent, mod 2u, to {−2u−s +1, . . . ,2u−s−1}. Let

δa(x,y) =

{
0 if x− y mod 2u−s = 0
1{a(x− y) mod 2u ∈M2u−s,2u} otherwise

(2)

As argued when proving Eq. 1 in the proof of Lemma 2.3, this is an upper bound on 1{ha(x) = ha(y)}.
(δa(x,y) is almost the same as the collision bound used by [Ram95, Lemma 4], differing only in the special
case for x− y mod 2u−s = 0.)

Lemma 2.4. For u≥ s≥ 1, consider the OMS hash family HOMS from {0,1}u to {0,1}s. Let x,y ∈ {0,1}u

be distinct. Let z, i be integers so that x− y mod 2u = z2i and z is odd. For any odd α ∈ {0,1}⋆, if ha is
chosen uniformly at random fromHOMS

α ,

Eδa(x,y) =


0 if i≥ u− s
2/2s if i+ |α| ≤ u− s

1
2u−|α|−i1

{
α(x− y) mod 2|α|+i ∈M2u−s,2|α|+i

}
if |α|+ i≤ u

1
{

α(x− y) mod 2u ∈M2u−s,2u
}

if |α|+ i≥ u

.

Proof. When i ≥ u− s, δa(x,y) = 0 by definition. Henceforth assume i < u− s. We can decompose a
into its fixed lower bits α and uniformly random upper bits a′ ∈

[
2u−|α|), so that a = a′2|α| + α . Let

t = min(|α|+ i,u) Then

a(x− y) mod 2u =
(
(a′z mod 2u−t)2t +αz2i) mod 2u .

Since z is odd, and a′ is chosen uniformly at random from
[
2u−|α|), the product a′z mod 2u−t is distributed

uniformly over [2u−t). Let S be the set of possible values of a(x− y) mod 2u.
Depending on i+ |α|, we have two cases:

1. If i+ |α| ≤ u− s, let T = M2u−s,2u ∪ {2u−s}. The set T is, mod2u, a contiguous interval contain-
ing 2u−s+1 elements. Since i + |α| ≤ u− s + 1 ≤ u, by Lemma 2.2, S has exactly 2u−s+1/2i+|α|

intersections with T . Because both α and z are odd and |α| ≥ 1, a(x− y) mod 2i+1 = 2i. Because
i+ 1 ≤ u− s, we have 2u−s mod 2i+1 = 0, which implies that the set S cannot contain 2u−s. Thus
|S∩M2u−s,2u |= |S∩T |. Since a(x− y) mod 2u is uniformly distributed over values in S, it follows

Pr[a(x− y) mod 2u ∈M2u−s,2u ] =
2u−s+1

2i+|α|2u−|α|−i =
2
2s .

2. If i+ |α| > u− s, then because the elements S are spaced 2t apart, and 2t ≥ 2u−s+1, S has at most
one intersection with M2u−s,2u . In particular, S intersects M2u−s,2u iff α(x− y) mod 2t ∈M2u−s,2t . That
the latter condition is necessary follows because the only possible value of a(x− y) mod 2t is α(x−
y) mod 2t ; that it is sufficient follows because every translation of α(x−y) mod 2t by a multiple of 2t
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is contained in S. Since there are 2u−t values in S, the expected value if S∩M ̸= /0 is 1
2u−t . [This is a

!!!bit vague, and in general the entire proof needs cleanup.]

Finally, we note that δa(x,y) is not much larger than and can sometimes be used instead of the actual
collision probability function.

Corollary 2.5. With ha chosen uniformly at random from the setHOMS of OMS hash functions from {0,1}u

to {0,1}s, and x,y distinct values in {0,1}u,

Eδa(x,y)≤
2
2s .

Proof. Decompose x−y = z2i for odd z and integral i. Since either i≥ u−s, or i+ |α|= i+1≤ u−s, when
applying apply Lemma 2.4 we get an upper bound of either 0 or 2/2s.

3 Properties of the odd-multiply-add-shift (OMA) hash family

Define mabs(x,m) := min(x mod m,−x mod m); this can be seen as a modular absolute value. Then for
any v,w, mabs(v−w,m) = mabs(w− v,m) is the minimum absolute value of an offset d ∈ ZZ so that (v+
d) mod m = w mod m.

Lemma 3.1 (Effect of a random offset on hash function collisions). Fix u ≥ s ≥ 1. Let w,v be (possibly
identical) integers in {0,1}u, and b a uniformly random integer in [2u−s). Then:

Pr[w+b mod 2u div 2u−s = v+b mod 2u div 2u−s] =
1

2u−s max
(
0,2u−s−mabs(v−w,2u−s)

)
Proof. Observe that if, for some x,y, xdiv2u−s = ydiv2u−s, then mabs(x−y,2u−s)≤ |x−y| ≤ 2u−s−1. Since
mabs(v−w,2u−s) = mabs((v+b)− (w+b),2u−s) for any value of b, it follows that if mabs(v−w,2u−s)≥
2u−s, then

Pr[w+b mod 2u div 2u−s = v+b mod 2u div 2u−s] .

Consider the case where mabs(v−w,2u−s) < 2u−s. Without loss of generality assume v−w mod 2u−s <
2u−s. We note that exactly 2u−s−mabs(v−w,2u−s) of the possible values of b ∈ [2u−s) will place (w+
b) mod 2u−s in the set [2u−s−mabs(v−w,2u−s)), in which case (v+ b) mod 2u div 2u−s will equal (w+
b) mod 2u div 2u−s. [This is skipping much of the actual proof. One approach: use casework, like for

!!!the offset collision estimator function? ]

Lemma 3.2. The OMA hash familyHOMA from {0,1}u to {0,1}s is universal.

This will follow as a special case of the upcoming Lemma 3.3.
For odd α ∈ {0,1}⋆, define HOMA

α,⋆ to be the set of OMA hash functions with multiplier a whose least
significant bits are α , and arbitrary offset. Formally,

HOMA
α,⋆ :=

{
ha′2|α|+α,b : a′ ∈

[
2u−|α|

)
,b ∈

[
2u−s)}

Unlike for the OMS functions, we do not need any upper bound for the collision probability when hash
functions are chosen uniformly fromHOMA

α,⋆ , because the exact value can be computed directly.
!!![In general lemmas, [2u) might be preferable to {0,1}u?]

4These properties follow from that fact that the multiplicative group (Z/2kZ)× of Z/2kZ consists of the equivalence classes of
odd integers in integers in

[
2k).

5Since a is odd, ax mod 2u will never equal ay mod 2u, and these two subcases are disjoint; but this is not critical to the proof.
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Lemma 3.3. Let u≥ s≥ 1. For distinct x,y∈{0,1}u, let z, i be integers for which z is odd and x−y mod 2u =
z2i. Fix odd α ∈ {0,1}⋆. If ha,b is chosen uniformly at random fromHOMA

α,⋆ , then:

Pr[ha,b(x) = ha,b(y)] =


0 if i≥ u− s
1
2s if |α|+ i≤ u− s

1
22u−s−|α|−i max

(
0,2u−s−mabs(αx−αy,2|α|+i)

)
if u≥ |α|+ i > u− s

1
2u−s max(0,2u−s−mabs(αx−αy,2u)) if |α|+ i≥ u

.

Proof. First, consider the case where i≥ u− s. Then

(ax−ay) mod 2u−s = z2i mod 2u−s = 0 . (3)

Since a is always odd, the map z 7→ az mod 2u is always a bijection, so mabs(ax−ay,2u) cannot be zero and
must instead be ≥ 2u−s. Applying Lemma 3.1 with w = ax and v = ay implies Pr[ha,b(x) = ha,b(y)] = 0.

For the remaining cases, we have i < u− s. By the definition of HOMA
α,⋆ , the random variable a =

a′2|α|+α for an a′ distributed uniformly randomly over
[
2u−|α|).

For a given value of a′, the probability (over b) that ha,b(x) = ha,b(y) is, by Lemma 3.1, a function of

(ax−ay) mod 2u = (a′z2|α|+i +αz2i) mod 2u

Since z is odd, and a′ is chosen uniformly at random over
[
2u−|α|), their product a′z mod 2u−|α|−i is uni-

formly distributed over
[
2u−|α|−i

)
. Also, since α is odd, αz is odd.

Let S be the set of possible values of ax− ay mod 2u. These values differ ( mod 2u) by multiples of
2|α|+i, if |α|+ i < u; if |α|+ i≥ u, then S contains only αz2i mod 2u.

The probability from Lemma 3.1 is a function of ax−ay mod 2u which is supported on M2u−s,2u . Define
T = M2u−s,2u ∪{2u−s}

We have two main cases:

1. If |α|+ i ≤ u− s, then |S∩T | ≥ 2, because T forms (in Z/2uZ) an interval of length 2u−s+1 and by
Lemma 2.2 has 2u−s+1/2|α|+i intersections with S. Furthermore, we can match up intersections of S
with T− := {2u−2u−s+1, . . . ,2u−1}∪{0}with intersections of S with T+ := {1, . . . ,2u−s}, matching
values r ∈ T+ with r−2u−s mod 2u in T−. Applying Lemma 3.1 for each value in S, we obtain:

Pr[ha,b(x) = ha,b(y)] =
1

|S|2u−s ∑
r∈S

max(0,2u−s−mabs(r,2u))

=
1

2u−|α|−i2u−s ∑
r∈T

(2u−s−mabs(r,2u))

=
1

2u−|α|−i2u−s ∑
r∈T+

((2u−s−mabs(r,2u))+(2u−s−mabs((r−2u−s) mod 2u,2u)))

=
1

2u−|α|−i2u−s ∑
r∈T+

((2u−s− r)+(2u−s− (2u−s− r)))

=
1

2u−|α|−i2u−s

2u−s

2|α|+i 2
u−s =

1
2s .

(See Figure 1 for a diagram of the values of max(0,2u−s−mabs(r,2u)) on S.)

2. If |α|+ i > u−s, then |S∩M2u−s,2u | ≤ 1, again by Lemma 2.2. For |α|+ i < u, the absolute distance of
the closest value in S to 0 is preserved when taking all elements in S, mod 2|α|+i, and is mabs(αx−
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0
2 4 6

... ...
8 10-2-4-6-8-10

S -5 -1-9 3 7 11

(mod 2u)

Figure 1: Evaluation of the function max(0,2u−s−mabs(r,2u)) (shown in green) over the set S (blue), from the proof
of Lemma 3.3, for example inputs.

αy,2|α|+i). [needs better explanation]. If any element of S yield a nonzero collision probability,
!!!it will be this one. Similarly, if |α|+ i ≥ u, the collision probability for the only possible value of

ax−ay mod 2u in S is a function of mabs(αx−αy,2u). Applying Lemma 3.1, we get:

Pr[ha,b(x) = ha,b(y)] =
1
|S|
· 1

2u−s max(0,2u−s−mabs(αx−αy,min(2u,2|α|+i)))

=
1

2max(0,u−|α|−i)
· 1

2u−s max(0,2u−s−mabs(αx−αy,min(2u,2|α|+i))) .

Proof of Lemma 3.2. When α = (1), HOMA
α,⋆ =HOMA. Let x,y be any distinct values in {0,1}u, and let z, i

be integers so that z is odd and x− y mod 2u = z2i. Now apply the collision bound of Lemma 3.3. Since
|α| = 1, either i ≥ u− s or |α|+ i = i+ 1 ≤ u− s; in both cases the probability that ha,b(x) = ha,b(y) is
≤ 1/2s.

For each β ∈ {0,1}⋆, define HOMA
a,β to be the set of OMA hash functions with multiplier a and whose

offset’s highest |β | bits match β ; that is,

HOMA
a,β :=

{
ha,β2u−s−|β |+b′ : b ∈

[
2u−s−|β |

)}
Lemma 3.4. Say x,y are distinct values in {0,1}u. If ha,b is chosen uniformly at random fromHOMA

a,β :

Pr[ha,b(x) = ha,b(y)] =


f (x,y) if (ay−ax) mod 2u < 2u−s

f (y,x) if (ax−ay) mod 2u < 2u−s

0 otherwise

(4)

where f (x,y) = 1{(ay+β2u−s−|β |) mod 2u−s ≥ (ax+β2u−s−|β |) mod 2u−s}

+
σ((ax+β2u−s−|β |))−σ((ay+β2u−s−|β |))

2u−s−|β |

where σ(w) = max(0,w mod 2u−s− (2u−s−2u−s−|β |))

Proof. Since ha,b is drawn from HOMA
a,β , b = β2u−s−|β |+ b′ where b′ is chosen uniformly at random from[

2u−s−|β |).
For (ax+ b) mod 2u div 2u−s to equal (ay+ b) mod 2u div 2u−s, both (ax+ b) mod 2u and (ay+ b)

mod 2u must lie in the same set {k2u−s, . . . ,k2u−s + 2u−s− 1} for some integer k. This can only happen if
either (ax−ay) mod 2u < 2u−s or (ay−ax) mod 2u < 2u−s; if neither of these two conditions hold, (ax+b)
mod 2u div 2u−s and (ay+b) mod 2u div 2u−s will be different, no matter what b is.

10



We now evaluate the case where (ay− ax) mod 2u < 2u−s holds; by symmetry, the probability that
ha,b(x) = ha,b(y) will have a similar form (with x and y swapped) when (ax−ay) mod 2u < 2u−s.

For a given value w ∈ [2u), the number of values b′ ∈
[
2u−|β |) for which (w+ b′) mod 2u div 2u−s ̸=

w mod 2u div 2u−s is exactly

σ(w) = max(0,w mod 2u−s− (2u−s−2u−s−|β |))

since (w+b′) mod 2u only enters the interval of 2u−s elements mapping to (wdiv2u−s+1) mod 2s if w mod
2u−s is close enough to 2u for the addition to b′ to make (w mod 2u−s)+b′ ≥ 2u−s.

Because (ay−ax) mod 2u < 2u−s, we have two cases:

• ha,b(x) and ha,b(y) collide when b′ = 0. In this case,

(ay+β2u−s−|β |) mod 2u−s ≥ (ax+β2u−s−|β |) mod 2u−s

since (ax+β2u−s−|β |) mod 2u and (ay+β2u−s−|β |) mod 2u are in the same coset of [2u−s) and taking
mod 2u−s does not change their order. As b′ increases from 0 to 2u−s−1, first (ay+β2u−s−|β |+b′)div
2u−s might increase (preventing a collision), and then (ax+ β2u−s−|β |+ b′) div 2u−s might increase
(preserving a collision). The total probability that b′ is such that ha,b(x) = ha,b(y) is thus:

1
2u−s−|β | (2

u−s−|β |+σ((ax+β2u−s−|β |))−σ((ay+β2u−s−|β |)))

• ha,b(y) = (ha,b(y)+1) mod 2u−s when b′ = 0. Since (ax−ay) mod 2u < 2u−s, in this case we have:

(ay+β2u−s−|β |) mod 2u−s < (ax+β2u−s−|β |) mod 2u−s

As b′ is increased, first (ax+β2u−s−|β |+b′)div 2u−s will increase (creating a collision), followed by
(ay+β2u−s−|β |+b′)div 2u−s (preventing a collision). Similarly to the first case:

Pr[ha,b(x) = ha,b(y)] =
1

2u−s−|β | (σ((ax+β2u−s−|β |))−σ((ay+β2u−s−|β |)))

:
Summarizing all cases yields Eq. 4.

4 Properties of the odd-carryless-multiply-shift (OCM) hash family

For odd α ∈ {0,1}⋆, define HOCM
α to be the set of OCM hash functions with multiplier a whose least

significant bits are α . Formally,

HOCM
α :=

{
ha′2|α|+α,b : a′ ∈

[
2u−|α|

)}
Lemma 4.1. Fix some nonzero w∈ {0,1}u with i := TZCNT(w). Let j≥ 1, k≥ 0 be integers with j+k+ i≤
u. Given odd α ∈ {0,1} j, then for every z ∈ {0,1}k, there exists a unique a′ ∈ {0,1}k so that

((α +a′2 j)⊙w) sel [i+ j, i+ j+ k) = z .

11



Proof. We describe how to construct a′. Let a′0.a
′
1 . . .a

′
k−1 be the bits of a′. For each h ∈ [0,k), in ascending

order, note that

((α +2 ja′)⊙w)i+ j+h = (α⊙w)i+ j+h⊕
k−1⊕
g=0

((2 j+ga′g)⊙w)i+ j+h

= (α⊙w)i+ j+h⊕
h⊕

g=0

(a′gwi+h−g)

since the bits of w at positions below i are all zero. As wi = 1, setting

a′h = zh⊕ ((α +2 j(a′ mod 2h))⊙w)i+ j+h

will ensure ((α +2 ja′)⊙w)i+ j+h matches zh without affecting the result for any smaller values of h.

Lemma 4.2. Say x,y are distinct values in {0,1}u. Let i,z be integers for which z is odd and x− y = z2i.
Given some odd α ∈ {0,1}⋆, if ha is chosen uniformly at random fromHOCM

α :

Pr[ha(x) = ha(y)] =


0 if i≥ u− s
1
2s if |α|+ i≤ u− s

1
2u−|α|−i if (α⊙ (x⊕ y)) sel [u− s, |α|+ i) = 0
0 otherwise

Proof. Note that i indicates the least significant bit of x⊕ y. If i ≥ u− s, then by linearity of carryless
multiplication, (a⊙ x)⊕ (a⊙ y) = a⊙ (x⊕ y). Since a is odd, the least significant nonzero bit of a value is
preserved when multiplying by a. Consequently, the ith bit of a⊙ (x⊕ y) is set, so the i− (u− s)th bit of
ha(x)⊕ha(y) = a⊙ (x⊕ y)div 2u−s is set, which implies ha(x) ̸= ha(y).

If ha is chosen uniformly at random fromHOCM
α , then a = α +2|α|a′ where a′ is distributed uniformly at

random over
[
2u−|α|). By Lemma 4.1, for each z ∈

[
2u−|α|−i

)
, there is a unique value of a′ mod 2u−|α|−i for

which (α +2|α|a′)⊙ (x⊕ y) sel [|α|+ i,u) = z. This implies that there is a bijection between (α +2|α|a′)⊙
(x⊕ y) sel [|α|+ i,u) and a′ mod 2u−|α|−i. Since a′ mod 2u−|α|−i is uniformly distributed, it follows that
(α +2|α|a′)⊙ (x⊕ y) sel [|α|+ i,u) is uniformly distributed. On the other hand, we have:(

(α +2|α|a′)⊙ (x⊕ y)
)

sel [0, |α|+ i) = (α⊙ (x⊕ y)) sel [0, |α|+ i) .

Summarizing, the |α|+ i least significant bits of a⊙ (x⊕ y) mod 2u are fixed, and the u− |α|+ i most
significant bits of a⊙ (x⊕ y) mod 2u are uniform.

Consequently, if |α|+ i ≤ u− s, then ha(x)⊕ ha(y) is uniformly distributed over [2s) and equals zero
with exactly 1/2s probability. If α + i > u− s, then if α⊙ (x⊕y) sel [u− s,α + i) is nonzero, we will always
have ha(x) ̸= ha(y); if α⊙ (x⊕y) sel [u− s,α + i) is zero, then ha(x) = ha(y) iff a⊙ (x⊕y) sel [α + i,u) = 0
which occurs with probability 1/2u−|α|−i.

Corollary 4.3. For any u≥ s≥ 0, the OCM hash family from {0,1}u to {0,1}s is universal.

Proof. Say ha is chosen uniformly from HOCM. For any distinct x,y ∈ {0,1}u, let i = TZCNT(x⊕ y). By
Lemma 4.2 with α = (1), either i≥ u− s, in which case Pr[ha(x) = ha(y)] = 0, or i+ |α|= i+1≤ u− s, in
which case Pr[ha(x) = ha(y)] = 1/2s.
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5 Faster selection of OMS hash functions

[Ram95] identified an odd-multiply-hash function with collision count not more than average using the
method of conditional expectations in O(n2u) time. The expected value of the upper bound on the collision
probability (Lemma 2.4) in fact can be efficiently evaluated in batches, ultimately leading to an O(nu logn)
time algorithm.

Our goal is to select an OMS hash function multiplier a for which the sum of pairwise collision upper
bounds,

τ(a) = ∑
{x,y}∈(S

2)

δa(x,y) (5)

is less than the expected value over all odd a ∈
[
2b
)
. Recall that δa(x,y) is an upper bound on 1{ha(x) =

ha(y)}. Using Corollary 2.5, the selected value for a, a⋆, will satisfy

2
2s

(
n
2

)
≥ E[τ(a)]≥ τ(a⋆)≥ ∑

{x,y}∈(S
2)

1{ha(x) = ha(y)}= κ(ha⋆ ,S)

so the chosen multiplier a⋆ also guarantees few collisions for S under ha⋆ .
To pick a good a⋆, we use the method of conditional expectations to identify acceptable bits of a⋆ in

order from least significant to most significant, progressively extending an lsb-prefix α ∈ {0,1}s tar of set
bits while not increasing the expected value of τ(a) conditioned on random a being an extension of α . See
for example Algorithm 1.

Algorithm 1 Bit-by-bit parameter selection for τ : {0,1}u→ R by the method of conditional expectations

1: α ← (1)
2: q← E[τ(a)|a extends α]
3: for k in {1, . . . ,u−1} do
4: p← E[τ(a)|a extends α.(0)]
5: if p≤ q then
6: α ← α.(0)
7: q← p
8: else
9: α ← α.(1)

10: q← 2q− p
11: return α

The key observation in this section is that τ can be efficiently computed by evaluating the conditional
expectations of δa(x,y) over certain batches of pairs {x,y}. Define, for each i ∈ {0, . . . ,u−1}, γ ∈ {0,1}i,
and t in {0,1}, the set Si,γ,t to contain all elements in S whose (i+1) least significant bits are γ.(t). (Equiv-
alently, x ∈ Si,γ,t iff x mod 2i+1 = ∑

i
j=0 γ j2 j + t2i.) Since every pair {x,y} ∈

(S
2

)
shares some prefix length i

of least significant bits, differing on the next (ith, counting from 0) bit:(
S
2

)
=

⋃
i∈{0,...,u−1}

⋃
γ∈{0,1}i

Si,γ,0×Si,γ,1

Matching this decomposition, we can evaluate, for any α , E[τ(a)|a extends α] as a sum of terms:

φ(α, i,γ) := ∑
x∈Si,γ,0

∑
y∈Si,γ,1

E[δa(x,y)|a extends α]
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By Lemma 2.4, for any x,y, the quantity E[δa(x,y)|a extends α] evaluates to a piecewise-defined function,
whose branches depend on |α| and i := TZCNT(x⊕ y). When evaluating φ(α, i,γ), these parameters are
constant and we only need to consider a single branch. There are three main regions for a given |α|,
depending on i:

trivial region If i≥ u− s, then for all x ∈ Si,γ,0,y ∈ Si,γ,1, Eδa(x,y) = 0, so φ(α, i,γ) = 0.

base region If i+ |α| ≤ u− s, then for all x ∈ Si,γ,0,y ∈ Si,γ,1, Eδa(x,y) is constant; thus φ(α, i,γ) = |Si,γ,0| ·
|Si,γ,1| ·2/2s.

interactive region The remaining case, where i < u− s and i+ |α| > u− s, is trickier, but assuming Si,γ,0
and Si,γ,1 are provided as lists in a certain order, Lemma 5.1 describes how to compute φ(α, i,γ)
efficiently.

Lemma 5.1. Fix some odd α ∈ {0,1}⋆, i ∈ {0, . . . ,u−1}, and γ ∈ {0,1}i. Say Si,γ,0 and Si,γ,1 are provided
as lists that have been sorted by the key function x 7→ αx mod 2min(|α|+i,u). If i < u− s and i+ |α| > u− s,
then we can evaluate φ(α, i,γ) in linear (O(|Si,γ,0|+ |Si,γ,1|)) time.

!!!Proof. [special case, if values are not all distinct.]
For any x ∈ Si,γ,0, the set of y ∈ Si,γ,1 for which [specific condition holds] forms a contiguous (albeit

!!!possibly wrapping around) interval Ix ⊆ Si,γ,1. Using Algorithm 2, we can efficiently identify this interval for
a given x, update it as we iterate over values in Si,γ,0, and calculate the total number of (x,y) pairs satisfying
[objective]; this is just p = ∑x∈Si,γ,0 |Ix|. Then φ(α, i,γ) = p·???.

!!!In general, have a ”Sliding window” calculation, which is slightly complicated by wraparound.
!!![Sublemma: L/R, after being set initially, walk around S1 exactly once. Maybe create a figure

showing, on a common or parallel circles, the evaluation window and the points.]

5.1 Fast evaluation of the i+ |α| ≤ u− s case

We will now describe how to efficiently compute, for all i ∈ {0, . . . ,u−1}, the quantities

π(i) := ∑
γ∈{0,1}i

|Si,γ,0| · |Si,γ,1| (6)

When i+ |α| ≤ u− s, the quantity ∑
γ∈{0,1}i φ(α, i,γ) = 2

2s π(i). This is one of the components to computing
τ(α).

First, sort the input S in ascending order using a bit-reversed comparison, ordering x before y iff
BREV(x) < BREV(y). This order groups together values sharing the least significant bits; see for exam-
ple Figure 2.

The values (π(i))i∈{0,...,u−1} can be computed in a single pass over the sorted input, using a ≤ u-height
stack to keep track of when the last batch of values sharing some number of least significant bits begins. An
algorithm for this is given by Algorithm 3. The key idea here is that, for some i,γ pair, the sets Si,γ,0 and Si,γ,1
if nonempty are contiguous and adjacent to each other, with Si,γ,1 following Si,γ,0. The start of Si,γ,0 and end
of Si,γ,1 are both marked by a transition of a bit at position k for some k < i from 0 to 1; since each element x
in Si,γ,0⊔Si,γ,1 has x sel [0, i) = γ , there will be no such transitions between the start of Si,γ,0 and end of Si,γ,1.
The index at which Si,γ,0 ends and Si,γ,1 starts is marked with the ith bit of the elements changing from 0 to
1; if both Si,γ,0 and Si,γ,1 are nonempty, this occurs exactly once. Consequently, each nonzero |Si,γ,0||Si,γ,1|
term corresponds to a bit transition of the ith bit in the sorted input, and the values of |Si,γ,0| and |Si,γ,1| can
be determined by looking at the preceding and following transitions for lower bits.

!!![is a detailed correctness proof necessary? Also, runtime estimation.]
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Algorithm 2 Efficient evaluation of φ(α, i,γ) in the interactive region.

t←min(u, |α|+ i). ▷ Note that t > u− s

1: function BATCHPAIRESTIMATE(S0, S1) ▷ Requires: S0 and S1 to be sorted by key x 7→ (αx) mod 2t

2: if |S0| ≤ 1 or all αy mod 2t for y ∈ S1 are equal then
3: p← 0
4: for x in S0, any order do
5: if (α(x−S1[0])−2u−s +1) mod 2t ≤ 2u−s+1−1 then
6: p← p+1
7:
8: return p · |S1|

2u−t

9: p← 0
10: L← 0 ▷ Any initial value for L and R will work
11: R← 0
12: for x in S0, in order do
13: ▷ Update L, R to be rightmost indices minimizing (TL−αS1[L]) mod 2t and similarly for R ◁
14: TL← (αx−2u−s) mod 2t

15: TR← (αx+2u−s−1) mod 2t

16: while (TL−S1[(L+1) mod |S1|]) mod 2t ≤ (TL−αS1[L]) mod 2t do
17: L = (L+1) mod |S1|
18: while (TR−S1[(R+1) mod |S1|]) mod 2t ≤ (TR−αS1[R]) mod 2t do
19: R = (R+1) mod |S1|
20: if L ̸= R then
21: p← p+((R−L) mod |S1|) ▷ Only S1[ j] for j in the (L,R] modular interval match
22: else if (α(x−S1[0])−2u−s +1) mod 2t ≤ 2u−s+1−1 then
23: p← p+ |S1| ▷ All y ∈ S1 match
24: else
25: ▷ No matching y ∈ S1 ◁
26: return p · 1

2u−t

5.2 Aggregation and sorting

A single pass scan as in Algorithm 3 can be used to identify all pairs of nonempty sets Si,γ,0 and Si,γ,1. To
handle the ”interactive region” of i parameters for a given α , we could immediately sort Si,γ,0 and Si,γ,1 as
needed and then apply Algorithm 2 to each. It is possible to avoid some work with the following observa-
tions:

Observation 5.2. For any i,γ,b, the set Si,γ,b can be decomposed as Si+1,γ.(b),0 ⊔ Si+1,γ.(b),1. If one has
already sorted Si+1,γ.(b),0 and Si+1,γ.(b),1 by key function x 7→ (αx) mod 2t ′ for t ′ = min(|α|+(i+1),u), then
from these sorted sets one can compute the sorted version of Si,γ,0, by key function x 7→ (αx) mod 2t for
t = min(|α|+(i+1),u), in O(|Si,γ,0|) time. (See FILTERMERGESTEP of Algorithm 4, and Figure 3 for an
example.)

Observation 5.3. When i+ |α| grows above u, the value of φ(α, i,γ) stops changing; this reduces the
amount of computation needed. Specifically, [Precise conditions and proof here].

!!!
!!![changing higher bits does not affect the value of α(x− y) mod ... / of φ(α, i,γ).]

An algorithm to compute E[τ(a)|ha ∈ HOMS
α ] which applies these two observations is given in Algo-

rithm 4. Define ρ(α, i) = ∑
γ∈{0,1}i φ(α, i,γ).
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gamma gamma
gamma

old sorting region
new sorting region

new sorting region
new bit old bit

0 01 1 00
1
1

1 1 11 00 0

54
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34
50

74
82
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66

70

0 0 1 0 0 1 0
0 1 0 0 0 1

01 1 1 00 1

0

86

0 1 1 0 0 1
1 0 0 0 0 1

1
1
1

0
0
0

1
1
1 1

0
0

0
1

1
0

0 1

0
0
0
0
0

0 0 1 1 00
1 11 1
1

00 0

00 1 00 1 0
01 0 00 1 0
01 1 00 1 0

0 0 0 1
1
1
11

0
0

0
1

1
0

0 1

0
0
0
0

1 0
0
0
0

1
1
1

0 0 0 1 01 0
0 0 1 1 001
0 0 0 1 01 0

00 1 00 1 0
10 1 0 001

1 11 1 00 0
01 0 00 1 0

11 0 1 001
01 1 00 1 0

01 1 1 00 1

Figure 3: The filter-merge step of Algorithm 4 on example input, with γ = (0,1), i = 2, s = 4, u = 7. Note: the bit
strings here show the values of (αx mod 2u)x∈S, not (x)x∈S.

5.3 Implementation and runtime

All probabilities and expected values calculates in this algorithm are multiples of 1/2u, and the maximum
expected value is O(

(n
2

)
/2s), so only O(log(n)+u) bits are required to encode the various expected values

computed.
The total runtime of the algorithm in the (word-RAM?) model is O(nu(s+ logn)). [prove and elabo-

!!!rate]
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Algorithm 3 Fast calculation of batch pair size products (π(i) from Eq. 6), given a pre-sorted input.

1: function PROCESSSTACKDOWNTO(i, j, π : &mut, P : &mut) ▷ π is an array in Nu, P a stack of pairs
of integers

2: while P is nonempty do
3: Let ( j0, i0)← top element of P
4: if i0 < i then return
5: Remove the top element of P
6: if P is nonempty then
7: ( j1, i1)← (the new) top element of P
8: else
9: j1← 0

10: π[i0]← π[i0]+ ( j− j0) · ( j0− j1)

11: function COMPUTEBATCHPAIRS(S) ▷ Requires: S to already be sorted by bit-reversed values
12: π ← (0, . . . ,0) ∈ Nu

13: P← empty stack of (S-index, bit-index) pairs
14: for j ∈ {1, . . . ,n−1} do
15: i← TZCNT(S[ j−1]⊕S[ j])
16: PROCESSSTACKDOWNTO(i, &mutπ , &mutP)
17: Push ( j, i) onto P
18: PROCESSSTACKDOWNTO(0, &mutπ , &mutP)
19: return π
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Algorithm 4 Evaluation of E[τ(a)|a extends α], given preceding values

1: function FILTERMERGESTEP(L: &mut, i)
2: t = i+ |α|
3: Split L into lists L0 and L1 so that Lb := {x ∈ L : (αx)div 2i+2 mod 2 = b}.
4: if t ≥ u then
5: L← sorted merge of L0 and L1 by key function x 7→ (αx) mod 2u

6: else
7: Split L0,L1 into L0,0,L0,1, and L1,0, L0,1 so that Lb,c := {x ∈ Lb : (αx)div 2t mod 2 = c}.
8: L← sorted merge of L0,0,L0,1,L1,0, and L1,1 by key function x 7→ (αx) mod 2t

9: ▷ S⊆ {0,1}u is the set of values; σ ∈ Ru−s the probabilities by i-level(todo, def) from the preceding
evaluation for α ′.(0) so that α = α ′.(b).(0) for some bit b. ◁

10: function EXPECTEDTAU(S, σ , α)
11: ρ ← (0, . . . ,0) ∈ Ru

12: Sort S ascending by key function x 7→ BREV(x)
13: π ← COMPUTEBATCHPAIRS(S) ▷ From Algorithm 3
14: ▷ Base region ◁
15: for i ∈ {0, . . . ,u− s−|α|} do
16: ρ[i]← π[i] ·2/2s

17: ▷ Unchanged values in interactive region: TODO explain boundary condition ◁
18: for i ∈ {. . . ,min(2+u− s−|α|,u− s),u− s−1} do
19: ρ[i]← σ [i]
20: ▷ Interactive region ◁
21: first← true
22: for i ∈ {min(2+u− s−|α|,u− s), . . . ,max(0,u− s−|α|)}, descending do
23: for γ ∈ {0,1}i do ▷ Implemented with a single linear scan to only consider γ with either K0 or

K1 nonempty
24: ▷ The sets K0,K1 are located contiguously in S and are next to each other ◁
25: K0← elements of S ending in γ.(0)
26: K1← elements of S ending in γ.(1)
27: if first then
28: Sort K0 by key x 7→ (αx) mod 2min(u,i+|α|)

29: Sort K1 by key x 7→ (αx) mod 2min(u,i+|α|)

30: else
31: FILTERMERGESTEP(&mutK0, i) ▷ Update sorting of the sets for the new, smaller i
32: FILTERMERGESTEP(&mutK1, i)
33: ρ[i]← ρ[i]+BATCHPAIRESTIMATE(K0,K1,α, i) ▷ From Algorithm 2
34: first← f alse
35: return ρ
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6 Faster selection of OMA hash functions

OMA hash functions can be selected in a similar fashion to Section 5; the key differences are a slightly
different collision estimator and a new, O(nu)-time phase to select the additive part of the function.

6.1 Multiplier selection

Let S be the given set of n values in {0,1}u which we wish to hash to {0,1}s with a function from HOMA.
Define, as in Section 5, for each i ∈ [0,u), γ ∈ {0,1}i, and t ∈ {0,1}, the set Si,γ,t := {x ∈ S : x sel [0, i+1) =
γ.(t)}. Define

φ(α, i,γ) := ∑
x∈Si,γ,0

∑
y∈Si,γ,1

E[Pr[ha,b(x) = ha,b(y)]|ha,b ∈HOMA
α,⋆ ]

We want to select α , bit by bit, to keep the following expected collision count (Definition 1.5) less than or
equal to its expectation:

E[κ(ha,b,S)|ha,b ∈HOMA
α,⋆ ] = ∑

i∈[u)
∑

γ∈{0,1}i

φ(α, i,γ)

For a given partial multiplier prefix α ∈ {0,1}⋆, the way φ(α, i,γ) can be evaluated depends chiefly on
the value of i:

trivial region If i≥ u− s, then φ(α, i,γ) = 0.

base region If i+ |α| ≤ u− s, then φ(α, i,γ) = |Si,γ,0||Si,γ,1|/2s.

interactive region If i≤ u− s and i+ |α|> u− s, then, with t = min(|α|+ i,u), by Lemma 3.3

φ(α, i,γ) =
1

22u−s−t ∑
x∈Si,γ,0

∑
y∈Si,γ,0

max(0,2u−s−mabs(αx−αy,2t))

If Si,γ,0 and Si,γ,1 are provided as lists sorted by the key function z 7→ (αz) mod 2t , then we can
compute φ(α, i,γ) using a similar linear-time scanning algorithm as Algorithm 2. [explain: three

!!!indices, more casework heavy updates to maintain quantities. We do not present this because it
takes a page.] [ Doable with a similar rolling scan as the OMS case, except that three indices are

!!!needed, and to compute the values we maintain, in the loop, the sum of distances from the left
endpoint. Total endpoint motion is limited, as before. This is casework intensive and we do not
present the algorithm.]

Most of the muliplier selection procedure for OMS hash functions can be reused here; the main dif-
ference is that Algorithm 2 will need to be modified to handle the more complicated objective function of
Lemma 3.3.

6.2 Offset selection

Once a good multiplier a has been found, we choose the offset b by the method of conditional expectations;
bits of b are chosen from in order from most significant to least significant. The quantity we maintain at less
than or equal to its expectation is, for chosen high bits β ∈ {0,1}⋆:

σ(β ) := E[κ(ha,b|ha,b ∈HOMA
a,β )] = ∑

{x,y}∈(S
2)

Pr[ha,b(x) = ha,b(y) | ha,b ∈HOMA
a,β )]
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Algorithm 5 Efficient evaluation of σ(β )

1: ▷ Requires: S to be sorted by key x 7→ (ax) mod 2u ◁
2: function EXPECTEDPARTIALOFFSETCOLLISIONS(S, a, β )
3: rblock←−1 ▷ Will be updated to be rightmost element with aS[rspan] mod 2u div 2u−s matching

aS[i] mod 2u div 2u−s, without wrapping around inside the region
4: rspan←−1 ▷ Will be updated to be rightmost element for which (aS[rspan]−aS[i]) mod 2u−s < 2u−s

5: o← β2u−s−|β |

6: g← 2u−s−2u−s−|β |

7: p← 0
8: acc← max(0,(aS[0]+o) mod 2u−s−g) ▷ An accumulator over indices in {i+1, . . . ,rspan}
9: for i in 0, . . . , |S|−1 do

10: t← max(0,(aS[i]+o) mod 2u−s−g)
11: acc← acc− t
12: ▷ Advance rspan, without wrapping past i ◁
13: if rspan = i−1 then
14: rspan← i
15: while (rspan +1) mod |S| ̸= i and (aS[(rspan +1) mod |S|]−aS[i]) mod 2u−s < 2u−s do
16: rspan← (rspan +1) mod |S|
17: acc← acc+max(0,(aS[span]+o) mod 2u−s−g)
18: ▷ Advance rblock, without wrapping past i’s block ◁
19: if rblock = i−1 then
20: rblock← i
21: while (aS[(rblock +1) mod |S|]+o) mod 2u div 2u−s = (aS[i]+o) mod 2u div 2u−s and

(aS[(rblock +1) mod |S|]+o) mod 2u−s > (aS[i]+o) mod 2u−s do
22: rblock← (rblock +1) mod |S|
23: p← p+((rblock− i) mod |S|)2u−s−|β |+ t((rspan− i) mod |S|)−acc

24: return p/2u−s−|β |

Assuming the input set S has already been sorted by key x 7→ ax mod 2u beforehand, the quantity σ(β ) for
any β can be computed in linear time, since by Lemma 3.4 the individual terms Pr[ha,b(x) = ha,b(y) | ha,b ∈
HOMA

a,β )] have a relatively simple formula. See Algorithm 5.
!!![Should explain how algorithm 5 works – a single rolling scan captures and aggregates all interac-

tions. Algorithm needs direct implementation from pseudocode to check typos.]

7 Faster selection of OCM hash functions

The selection of OCM hash functions is slightly simpler than for OMS and OMA hash functions. Again,
we use the method of conditional expectations, selecting bits of the multiplier from least to most significant,
using the decomposition into batches of pairs as described in Section 5 to efficiently evaluate the conditional
expectation of the number of collisions within the input set.

Let S be the given set of n values in {0,1}u which we wish to hash to {0,1}s with a function fromHOCM.
Define, as in Section 5, for each i ∈ [0,u), γ ∈ {0,1}i, and t ∈ {0,1}, the set Si,γ,t := {x ∈ S : x sel [0, i+1) =
γ.(t)}. Define

φ(α, i,γ) := ∑
x∈Si,γ,0

∑
y∈Si,γ,1

E[Pr[ha(x) = ha(y)]|a extends α]
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For a given partial multiplier prefix α ∈ {0,1}⋆, there are three main regions for pairs (x,y) of elements as
a function of i := TZCNT(x⊕ y).

trivial region If i≥ u− s, then φ(α, i,γ) = 0.

base region If i+ |α| ≤ u− s, then φ(α, i,γ) = |Si,γ,0||Si,γ,1|/2s.

interactive region If i ≤ u− s and i+ |α| > u− s, then φ(α, i,γ) is just 1/2u−|α|−s times the number of
pairs (x,y) for x ∈ Si,γ,0 and y ∈ Si,γ,1 where (α⊙ (x⊕ y)) sel [u− s, i+ |α|) ̸= 0. If Si,γ,0 and Si,γ,1 are
provided sorted by key function x 7→ BREV((α⊙ x) sel [u− s,u)), then this number can be computed
in linear time. (See Algorithm 6.)

Algorithm 6 Efficient evaluation of φ(α, i,γ) in the interactive region, for theHOCM hash family

1: ▷ Requires: S0 and S1 to be sorted by key x 7→ BREV((α⊙ x) sel [u− s,u)) ◁
2: function BATCHPAIRESTIMATE(S0, S1)
3: p← 0
4: (i0, i1)← (0,0)
5: ▷ Iterate over maximum subsets T0 ⊆ S0 and T1 ⊆ S1 so that T0 and T1 share bits [u− s, |α|+ i),

and sum terms |T0||T1| ◁
6: while i0 < |S0| and i1 < |S1| do
7: ( j0, j1)← (i0, i1)
8: if BREV(S0[i0] sel [u− s,u))≤ BREV(S1[i1] sel [u− s,u)) then
9: while j0 < |S0| and S0[ j0] sel [u− s, |α|+ i) = S0[i0] sel [u− s, |α|+ i) do

10: j0← j0 +1
11: if BREV(S1[i1] sel [u− s,u))≤ BREV(S0[i0] sel [u− s,u)) then
12: while j1 < |S1| and S1[ j1] sel [u− s, |α|+ i) = S1[i1] sel [u− s, |α|+ i) do
13: j1← j1 +1
14: p← p+( j0− i0)( j1− i1)
15: (i0, i1)← ( j0, j1)
16: return p · 1

2u−|α|−i

Sorted access to the Si,γ,t sets, as needed, is slightly simpler to maintain than it was in Section 5. [Ex-
!!!plain the modified sorting algorithm: modify the OMS approach, with the main difference being that

FilterMergeStep only needs to merges the two sublists. And footnote: if randomization is acceptable,
can skip the sorting and use a hash table to count common bit patterns in sel[u− s, |α|+ i).]

8 Constructing a minimal perfect hash function

Observation 8.1. The OMS, OMA, and OCM hash families all have a bijection-shift structure; the functions
in them apply a bijection {0,1}u 7→ {0,1}u to the input and then select the top s bits of the result.

That the hash families have this structure follows from their linearity and use of an odd multiplier.
Specifically, for any distinct pair x,y ∈ {0,1}u, and OMS hash function from {0,1}u to {0,1}u, ha(x) :=
ax mod 2u, ha(x) = ha(y) iff a(x−y) mod 2u = 0 which only occurs if x = y, because a is odd. Similarly, for
an OMA hash function ha,b(x) := (ax+b) mod 2u, ha,b(x) = ha,b(y) iff a(x− y) mod 2u = 0. Finally, for an
OCM hash function ha(x) := (a⊙ x) mod 2u, ha(x) = ha(y) iff a⊙ (x− y) mod 2u = 0 which holds only iff
x = y, because a is odd and multiplying by it preserves the least significant nonzero bit of x− y.
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Lemma 8.2 (Tighter analysis of [HMP01]’s displacement finding algorithm). Let r, t be nonegative integers.
For i ∈ [n], let fi ∈ {0,1}t and gi ∈ {0,1}r be integers, so that all ( fi,gi) pairs are distinct. For each
x ∈ {0,1}t , define Gx := {gi : i ∈ [n]∧ fi = x}. Let c = ∑x∈{0,1}t

(|Gx|
2

)
. If max(n,4c) ≤ 2r, then running

Algorithm 7 on L = (( fi,gi))i∈[n] will produce a displacement table d : {0,1}t → {0,1}r so that, for all
i ∈ [n], the value gi⊕d( fi) is unique.

Algorithm 7 Deterministic displacement assignment from [HMP01, Section 4], with minor modifications

1: function FINDDISPLACEMENT(L, t, r) ▷ For L a list of ({0,1}t , {0,1}r) pairs, all distinct
2: Form list K of (subset, key) pairs from L
3: Sort K in decreasing order of subset size, handling ties arbitrarily
4: D← 0⃗ ∈ ({0,1}r)2t

5: for i in 0, . . . ,r do
6: Mi← 0⃗ ∈ N2i+1

7: for ( f ,G) in K do
8: d← 0 ∈ {0,1}r

9: w← |G|M0[0]
10: for i in 1, . . . ,r do
11: w0← 0
12: for g in G do
13: w0← w0 +Mi[(g div 2r−i)⊕ (2d)]
14: w1← w−w0
15: if w1 < w0 then
16: d← (2d)⊕1
17: w← w1
18: else
19: d← 2d
20: w← w0
21: for i in 0, . . . ,r do
22: for g in G do
23: Mi[(g⊕d)div 2r−i]←Mi[(g⊕d)div 2r−i]+1
24: D[ f ]← d
25: return D

Proof. Let F := { fi : i ∈ [n]}, and let x1, . . . ,x|F | be the elements in F ordered by descreasing value of
|Gx|, so that |Gx1 | ≥ |Gx2 | ≥ . . . ≥ |Gx|F | |. A described in [HMP01, Section 4.3], Lemma 8.2 iterates over
x1, . . . ,x|F | and, using the method of conditional expectations, assigns a displacement value d(xi) to each
xi so that |Gxi | has no more than the expected number of intersections, if d(xi) were chosen uniformly at
random from {0,1}r, with d(x1)⊕Gx1 , . . . ,d(xi−1)⊕Gxi−1 , counting multiplicity. Consequently, there will
be zero intersections if

vi := |Gxi |
i−1

∑
j=1
|Gx j |< 2r .

Since ∑
|F |
j=1 |Gx, j|= n, vi ≤ |Gxi |(n−|Gxi |)< n|Gxi |. Also, if |Gx j | ≥ 2, then

vi ≤
i−1

∑
j=1
|Gx j |2 ≤

2|Gx,i|
|Gx,i|−1

i−1

∑
j=1

(
|Gx j |

2

)
< 4c
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Thus vi < max(n,4c), so it max(n,4c)≤ 2r the algorithm will uniquely place all d( fi)⊕gi.

While Lemma 8.2 is a relatively tight analysis of Algorithm 7, it has not been ruled out whether there
are other packing algorithms with stronger bounds.

Using the structure of the bijection-shift hash families (Observation 8.1), we can identify a bijection of
values in

[
O(n2)

)
so that the expected number of collisions when we extract the high bits is small. Then we

can apply [HMP01]’s displacement table finding algorithm to construct a perfect hash function; but as the
following theorem, shows, by processing the colliding and non-colliding values separately, we can obtain a
minimal perfect hash function requiring a single dependent read of ⌈logn⌉ bits.

The general trick here to obtain a single-dependent-read evaluation, is tofirst find displacement values
for values that collide under h and then place the keys that were already uniquely hashed by h into the gaps.

Theorem 8.3. For n,u positive integers with u ≥ logn, implementing Algorithm 8 using either OMA or
OCM hashes will construct a minimal perfect hash function f for a n-element subset S in {0,1}u to [n], using
O(nu logn) time, O(nu) auxiliary space; the hash function f itself uses ≤ 5.66n⌈logn⌉+O(u+ logn) bits
of space and can be evaluated with exactly one dependent read of a ⌈logn⌉-bit word; there are O(u+ logn)
bits of parameters that are unconditionally used). OMS hashes can also be used but double the bound on
the space usage.

Algorithm 8 Minimal perfect hash function construction and evaluation
1: ▷ S is a set of n distinct integers ◁
2: ▷H a class of bijection-shift type hash functions which is υ-approximately universal ◁
3: function CONSTRUCT(S,H, υ)
4: s←

⌈
log(υ

(n
2

)
+1)

⌉
5: r← ⌊logn⌋
6: t←min(s,

⌈
log(4υ

(n
2

)
)
⌉
− r) ▷ If t < s, this ensures 4υ

(n
2

)
/2t ≤ 2r

7: Select f : {0,1}u→{0,1}s fromH which is perfect on S
8: R←{ f (x) : x ∈ S}.
9: Select g : {0,1}s→{0,1}s fromH so that h(x) := g(x)div2s−t has no more than υ

(n
2

)
/2t collisions

on R
10: Split R into RH := {x ∈ R : |h−1(h(x))∩R|> 1} and RL := {x ∈ R : |h−1(h(x))∩R|= 1}.
11: ▷ Displace keys in RH to

[
2⌊logn⌋) ◁

12: L←{(h(x),g(x) mod 2s−t) : x ∈ RH}
13: d← FINDDISPLACEMENT(L, t,r) ▷ This uses s− t ≤ r
14: ▷ Displace keys in RL to remaining locations in [n) ◁
15: M← 0⃗ ∈ Nn

16: for x ∈ RH do
17: M[d[h(x)]⊕ (g(x) mod 2s−t)]← 1
18: for x ∈ RL do
19: w← index of first zero entry in M
20: M[w]← 1
21: d[h(x)]← w⊕ (g(x) mod 2s−t) ▷ Now d has ⌈logn⌉-bit entries
22: return ((s, t,r, f ,g,d))

23: function EVAL((s, t,r, f ,g,d), x)
24: y← g( f (x))
25: return d[y div 2s−t ]⊕ (y mod 2s−t)
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Proof. The general construction, described in Algorithm 8, works with any class of bijection-shift hash
family which from which functions can be selected with collision counts below the υ-universal expected
value, for some υ . [a bit awkward phrasing to handle OMS’s selection method] It requires two hash

!!!functions; one from {0,1}u to {0,1}s for some s, and one from {0,1}s to {0,1}s (which is chosen to reduce
collisions for the top t bits of the output.)

If the OMS, OMA, or OCM hash families are used, then the functions f and g can be selected using
Theorem 1.6, Theorem 1.7, or Theorem 1.8 respectively. All of these have the same asymptotic time and
space requirements. To select g, we apply the theorem to get a {0,1}s to {0,1}t hash function h but then skip
the final div2s−t operation. Then h(x) = g(x)div2s−t , and because g is a bijection, the pairs ((h(x),g(x) mod
2s−t)) are all unique. This is one of the prerequisites to apply Lemma 8.2 to the list L.

Another requirement is that the input pair elements are in {0,1}t and {0,1}r. The former is immediate;
the latter holds because 4υ

(n
2

)
≥ υ

(n
2

)
+1, which implies that

s− t = max(0,
⌈

log(υ
(

n
2

)
+1)

⌉
− (

⌈
log(4υ

(
n
2

)
)− r

⌉
))≤ r

so for all x ∈ RH , g(x) mod 2s−t ∈ [2s−t)⊆ [2r).
The last condition to have Lemma 8.2 work is that max(|Rh|,4κ(h,Rh)) should be less than 2r. First,

since Rh contains only values x with |h−1(h(x))∩R| ≥ 2 and maxz≥2 z/
( z
=

)
2, |Rh| ≤ 2κ(h,Rh). Note that

4κ(h,Rh) = 4κ(h,R) := 4υ

(
n
2

)
/2t

is ≤ 2r if and only if

t ≥
⌈

log(4υ

(
n
2

)
/2r)

⌉
= ⌈log(2υn(n−1)⌉−⌊logn⌋

which holds by the definition of t.
!!![lemmatize the k(x) bound and move to appendix] We now determine a bound on size of the the

displacement table d. For any real a, the function k : x 7→ ⌈a+2x−⌊x⌋⌉− x is decreasing except at its
possible discontinuities: when a+ 2x mod 1 = 0 (where it may increase) and when x mod 1 = 0 (where
it may decrease). It is also invariant under integral translations of x. We have two cases, depending on
a mod 1.

• If a mod 1 = 0, then the discontinuities in [0,1) are at 0 and 1/2; at 0, k(x) = ⌈a⌉, while both one-
sided limits are ⌈a⌉+ 1. At 1/2, k(x) = ⌈a⌉+ 1/2, equaling the limit from the left, while the limit
from the right is ⌈a⌉+3/2.

• If a−⌊a⌋= a mod 1 ̸= 0, then the discontinuities in [0,1) are at 0 (decreasing), 1/2− a−⌊a⌋
2 (increas-

ing), and a−⌊a⌋
2 (increasing). The limit from the right at 1/2− a−⌊a⌋

2 is ⌈a⌉+ 1
2 +

a−⌊a⌋
2 , and the limit

from the right at 1− a−⌊a⌋
2 is ⌈a⌉+1+ a−⌊a⌋

2 . In both cases, the limit from the right is ≤ ⌈a⌉+3/2.

Therefore, supx∈R k(x)≤ 3/2. With this we can bound

t = ⌈log(2υ)+2logn−⌊logn⌋⌉ ≤ ⌈log(2υ)⌉+ 3
2
+ logn .

(When υ is a power of two, and n is also exactly a power of two, we have that ⌊logn⌋ equals logn, and
⌈logn(n−1)⌉) equals 2 logn, in which case t = log(2υ) + logn. Decreasing n by one would increase t
(because r is now smaller), and increasing n by one would increase t (to keep the collisions below the
threshold).)

In particular, for the OMA family, where υ = 2, the table always has 2t ≤ 27/2n≤ 11.31n entries. When
using OMS or OCM hashes, where υ = 1, the table always has 2t ≤ 25/2n≤ 5.66n entries.
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Remark. If one does not need a minimal perfect hash, then changing the parameters of Algorithm 8 to
r = ⌈logn⌉ will slightly reduce the size of the displacement table.

Remark. For comparison, a tighter analysis of the double-displacement hashing scheme of [HMP01] sug-
gests that for integer n and r =

⌈
log
√

2n
⌉
≤ log(n)+ 3

2 , it can perfectly hash n element sets of elements in

{0,1}2r to {0,1}r using two displacement tables with 2r elements. The total number of displacement table
entries would then be ≤ 2(23/2n), which is the same bound as Theorem 8.3’s 25/2n when using OMA or
OCM hashes.

Remark. Algorithm 8 can be modified to use the leaf-hashing construction of [FKS84] instead of the XOR-
displacement procedure (Algorithm 7). If the leaf hash families are chosen to have O(ℓ2) selection for leaf
size ℓ, then the overall leaf hashing step will take O(n) time. Depending on the ratios of the actual leaf
hash ranges to

(
ℓ
2

)
, the table of leaf hashes and offsets may end up with a smaller number of entries than

Algorithm 8; however, these entries require a ⌈logn⌉ bit offset, plus for leaf size ℓ, an Ω(logℓ+ log logn)6

bit hash function

9 Open problems

Question 9.1. Is there any near-linear time deterministic construction of a perfect hash function from[
O(n2)

)
to [O(n)) using O(n) bits of space, and which requires at most a single ”dependent read” of a

O(logn) bit interval to evaluate?

Question 9.2. Many perfect hash tables use variable length strings as keys, instead of fixed length integers.
[Ruz09, Sections 5-6] describes a recursive method to deterministically find non-colliding hash signatures
for strings, but the resulting hash function is not as simple as those of randomized hash function construc-
tions.

Is there any efficient deterministic parameter selection algorithm for the standard rolling polynomial
string hash? Specifically, say x(1), . . . ,x(n) are strings in ({0,1}k)⋆, and F is a finite field of size≤ 2O(k). (For
example, a Mersenne prime field like Z/(289−1)Z.) For a in F, define the hash function ha(x) = ∑

|x|−1
i=0 aixi.

If a is chosen uniformly at random, then the probability that all ha(x( j)) for j ∈ [n] are distinct is

≥ 1− 1
|F| ∑
{i, j}∈([n]2 )

max(|x(i)|, |x( j)|)≥ 1− 1
|F|

n ∑
i∈[n]
|x(i)|

For input size t = n∑i∈[n] |x(i)|, is there any O(t polylog(t)) time deterministic algorithm to find a value
of a without any collisions? O(tnpolylog(t)) is certainly doable using multipoint polynomial evaluation
(Lemma B.1).

Question 9.3. Can any of the OMS, OMA, or OCM hash selection algorithms be optimized to use O(n(u+
logn)) asymptotic (word-RAM) time, or implemented to always run within a small constant factor of sorting
time in practice? (To give a specific target, below 100 ns per element when processing a set of ≤ 225 values
in {0,1}64; unoptimized implementations of the current algorithms take around 10000 ns per element?)

6This is a well known lower bound, with the following short proof. Say H is a universal hash family from A to B; every pair
x,y ∈ A must be distinguished by some h ∈H, so the function f : A→ B|H| which concatenates all h ∈H must be injective, hence
|H| ≥ log |A|/ log |B|; and the most common hash function in H will collide on some pair w,z of elements in A and so must be
chosen with ≤ 1/|B| probability, so |H| ≥ |B|. Together these imply log |H| ≥Ω(log log |A|+ log |B|).
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A Deferred proofs

B Deterministic selection of polynomial string hash parameters

Lemma B.1 (Deterministic selection of string hashing parameters). Let F be a finite field and let x(1), . . . ,x(n)

be unique strings in F⋆. Let t = n∑i∈[n] |x(i)| be the number of input characters. For each a ∈ F, define

ha(x) :=∑
|x|−1
i=0 aixi. If t < |F|, then there is a deterministic algorithm taking O(tn log |F| log(tn logF) log(tn))

finite-tape-Turing-machine time to identify a specific a⋆ ∈ F for which ha⋆(x
(1)), . . . ,ha⋆(x

(n)) are all distinct.

Proof. Equivalently, we seek to find a value a for which, for all {i, j} ∈
(
[n]
2

)
, ha(x(i)) ̸= ha(x(i)). For a given

i, j, this occurs if the polynomial

Pi, j(a) :=
max(|x(i)|,|x( j)|)−1

∑
k=0

a(x(i)k − x( j)
k )

does not have a root at a. It thus suffices to find a value which is not a root of

Q(a) := ∏
{i, j}∈([n]2 )

Pi, j(a) .

The polynomial Q has degree

∑
{i, j}∈([n]2 )

(max(|x(i)|, |x( j)|)−1)< n ∑
i∈[n]
|x(i)|=: t .

It can be constructed using a tree of products that starts by multiplying individual pairs of Pi, j polynomials
and culminates in the multiplication of two degree-O(t) polynomials. Since Q has at most degQ roots in F,
if we evaluate Q on an arbitrary set S of t elements in F, there will be at least one a⋆ ∈ S for which Q(a⋆) ̸= 0.
Since Q(a⋆) ̸= 0, it follows that for all {i, j} ∈

(
[n]
2

)
, ha⋆(x

(i)) ̸= ha⋆(x
(i)), hence a⋆ is the desired value.

Define M(s) to be the Turing-machine time needed to multiply two degree s polynomials over F, and
E(s) the time to evaluate a degree s polynomial at s points, then the total runtime of this procedure is
O(M(tn) log(tn)+E(tn)). According to [BES05], E(s) = O(3/2M(s) logs+O(M(s))) (although if S is a
geometric progression one can get E(s) = O(M(s))). Since s = O(poly |F|), we can use Kronecker substi-
tution to multiply degree s polynomials using integer multiplication of O(s log |F|) bit quantities, which by
[HvdH21] takes O(s log |F| log(s logF)) time on a multi-tape Turing machine. Combining these results, the
total time required to find a⋆ is O(tn log |F| log(tn logF) log tn).

C Runtime evaluation for previous work
!!![Ruzic’s universe reduction: what is the Turing machine bit complexity? What changes with the

improved inversion count approximation algorithm of Chan and Patrascu?]
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