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Goal

For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for the different ways randomness can be
used?

Yes: Missing Item Finding
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The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent

Two player game ≡ Streaming algorithm with adaptive adversary
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Streaming algorithms

▶ Streaming Algorithm:
▶ limited memory
▶ processes sequence of elements one by one

Algorithm for fixed MIF(n, ℓ) input streams with ℓ≪ n

S← random subset of [n] of size O (1)
for e from input stream

if e ∈ S:
remove e from S

report: arbitrary element of S
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Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020
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The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
S={2,4,7}
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Four natural categories of streaming algorithms, by randomness type

Deterministic

No randomness
▶ Exact counter
▶ Sparse recovery
▶ Greedy

matching

Random seed

Initial state random
▶ Linear sketch

with random
hash function

▶ Rabin
fingerprint

▶ Example MIF
algo

Random tape

Transitions random
▶ Reservoir

sampling
▶ Morris Counter
▶ Noise /

Differential
privacy

Random oracle

Free access to long,
persistent, random
string
▶ Linear sketch

with i.i.d. entries
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Randomness type (almost) does not matter in static setting or with
bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman’s theorema

▶ Immediate corollary: any ϵ-error
random oracle streaming algorithm
with Q possible inputs has random
seed emulation with ϵ (1 + δ) error

and +O
(

log logQ
ϵδ

)
bits of space

▶ Non-constructive
▶ # adversaries = exp (# streams)

aIlan Newman. Private vs. common random bits
in communication complexity. Inform. Process.
Lett., 39(2):67–71, 1991

Pseudo-random generators:
▶ If one-way functions exist and

adversary is poly-time, ....
▶ If adversary has less memory than

algorithm ...
▶ Nisan’s PRGa

aNoam Nisan. Pseudorandom generators for
space-bounded computation. In Proc. 22nd Annual
ACM Symposium on the Theory of Computing,
pages 204–212, 1990
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Main Result
For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for different ways randomness can be used?

MIF (n, ℓ) space, adversarial setting

ℓ = 2
√

log n ℓ =
√
n

Random oracle Θ̃ (1) Θ̃ (1)

Random tape Θ̃ (1) Ω̃
(
ℓ1/4

)
Random seed Θ̃

(√
ℓ
)

Θ̃
(√

ℓ
)

Deterministic Θ̃ (ℓ) Θ̃ (ℓ)

(Hiding polylog(n, ℓ) factors; at error δ = 1
n2 )

Yes: for RT/RO and RS/RT

1 n1/2 n3/5n2/3 n
Stream length ℓ

1
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n1/6
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Random oracle

Adversarial setting space complexity for MIF(n,ℓ)
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Specific results of this paper

1. Lower bound for random tape in
adversarial setting

2. Upper bound for random tape in
adversarial setting

3. Lower bound for
pseudo-deterministic algorithms

4. Corollary via older worka: =⇒ lower
bound for random seed in adversarial
setting

aManuel Stoeckl. Streaming algorithms for the
missing item finding problem. In Proc. 34th Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 793–818, 2023. Full version at
arXiv:2211.05170v1

Known results (this + Stoeckl 2023, 2024)

Setting Type Space

Static Seed Θ̃ (1)

Adversarial Oracle Θ̃
(
ℓ2/n+ 1

)
Adversarial Tape Ω

(
ℓ
15
32

logn ℓ
)

Õ
(
ℓlogn ℓ

)
Adversarial Seed Θ̃

(
ℓ2/n+

√
ℓ
)

Pseudo-det. Oracle Θ̃ (ℓ)

Any Det. Θ̃ (ℓ)

(Hiding polylog(n, ℓ) factors; at error δ = 1
n2 )

Other work: Magen 2024; Tarui 2007
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Random tape algorithm (in adversarial setting): recursive structure

▶ Design: split universe [n] into k
blocks

▶ Run random-subset algorithm
to choose a safe block

▶ Inside chosen safe block: run
this algorithm on domain [n/k]

Init()

Split [n] into B1,...,Bk

S ← random subset of [k]
c ← S.pop()
A ← recursive instance on Bc

Update(e)

if e ∈ Bi for any i in S:
remove i from S

if e ∈ Bc:
A.Update(e)
if A is done:

c ← S.pop()?
A ← recursive instance on Bc

report: A's output



18/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems



19/25

Random tape lower bound (in adversarial setting): recursive structure

Lemma 3 (Stoeckl 2023).
Robust algorithms for MIF (n, ℓ) with ≤ 3

4 error probability require Ω
(
ℓ2/n

)
space

Lemma 4.
Lower bound for a z-bit robust random tape algorithm for MIF (n, ℓ) depends on the
lower bound for MIF (w, t) with

w = Θ
(zn
ℓ

)
t = Θ

(
ℓ

z

)
Theorem 5.
Robust random tape algorithms for MIF (n, ℓ) require space:

Ω

(
max

k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
ℓ
15
32

logn ℓ
)
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Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W
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What is pseudo-determinism?

▶ Randomized algorithm A that behaves like a deterministic one
▶ There exists canonical output function fA from inputs to outputs so that

Pr [A (x) = fA (x)] ≥ 1− ϵ for all possible inputs x
▶ Pseudo-deterministic streaming algorithms:3

▶ If correctness relation is a function, correct algorithms are pseudo-deterministic
▶ Automatically work in the adversarial setting
▶ Newman’s theorem can apply

3For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman,
Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th Conference
on Innovations in Theoretical Computer Science, volume 151, 79:1–79:25, 2020
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▶ Automatically work in the adversarial setting
▶ Newman’s theorem can apply

3For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman,
Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th Conference
on Innovations in Theoretical Computer Science, volume 151, 79:1–79:25, 2020
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Pseudo-deterministic and random seed lower bounds
Theorem 6.
Pseudo-deterministic random-oracle algorithms for MIF (n, ℓ) with error
δ = 1/poly (n) and ℓ = Ω(log n) require space

Ω

(
ℓ

(log n)2
)

Theorem 7 (Stoeckl 2024).
A random seed streaming algorithm for adversarial setting with z bits of state
processing a stream of length ℓ can be made to probably “behave
pseudo-deterministically” for some contiguous stretch of Θ(ℓ/z) inputs.

Corollary 8.
Random seed, adversarial setting, ≤ 1/6 error, MIF (n, ℓ) algorithms require space4

Ω

(
ℓ2

n
+

√
ℓ

(log n)3

)
4The ℓ2/n term comes from Lemma 3.
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Open problems

▶ Mirror Game: like MIF, but a) neither player can repeat numbers b) n = 2ℓ c)
player starts5

▶ Unknown: do space-efficient algorithms need a random oracle?

▶ Can we separate random seed and tape for adversarial setting turnstile L0
estimation algorithms? Pseudo-deterministic gap hamming communication
complexity still open.6

5Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc. 10th
Conference on Innovations in Theoretical Computer Science, 36:1–36:14, 2018, Feige 2019; Magen and
Naor 2022; Menuhin and Naor 2022

6Some progress: Dmytro Gavinsky. Unambiguous parity-query complexity. arXiv preprint
arXiv:2401.11274, 2024



24/25

Open problems

▶ Mirror Game: like MIF, but a) neither player can repeat numbers b) n = 2ℓ c)
player starts5

▶ Unknown: do space-efficient algorithms need a random oracle?

▶ Can we separate random seed and tape for adversarial setting turnstile L0
estimation algorithms? Pseudo-deterministic gap hamming communication
complexity still open.6

5Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc. 10th
Conference on Innovations in Theoretical Computer Science, 36:1–36:14, 2018, Feige 2019; Magen and
Naor 2022; Menuhin and Naor 2022

6Some progress: Dmytro Gavinsky. Unambiguous parity-query complexity. arXiv preprint
arXiv:2401.11274, 2024



25/25

Conclusion
Deterministic Random seed Random tape Random oracle

▶ Unlike in the static setting, the example of Missing Item Finding shows that
space-efficient streaming algorithms in the adversarial setting may require a
random tape or random oracle.

▶ Lower bound methods:
▶ Random tape: Recursive structure of MIF algorithms + adversary iteratively

searching for information on past states + a useful property when search cannot
progress

▶ Random seed: use semi-generic reduction to pseudo-deterministic
▶ Pseudo-deterministic: generalize deterministic proof + alternate establishing

canonical and actual algorithm properties
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Bonus slides

1. State machine views (of randomness types, models.)

2. Random oracle algorithm explanation

3. Random-seed to pseudo-deterministic explanation

4. Full statements of main theorems

5. Reduction step for random tape lower bound

6. Simplified FindCommonOutputs

7. Related work
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State machine perspective: static setting
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State machine perspective: adversarial setting
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State machine perspective: white-box adversarial setting
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State machine perspective: deterministic
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State machine perspective: random seed
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State machine perspective: random tape
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State machine perspective: random oracle
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Random oracle algorithm

▶ In “random sample” approach, S can be drawn from oracle randomness
▶ If always outputting least available element of S, can efficiently encode removed

elements as union of contiguous and sparse sets

Input set

Algorithm state

Output

4 9 6 5 14 16 17 1 2 15 10 3 12 7 13 0 11 8

14

4 9 6 5 17 2 15 7 0 8
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Random seed to pseudo-deterministic

Consider adversary with Θ(z) epochs of length t = Θ(ℓ/z).

For each epoch:
1. If ∃ subsequence x of length t for which, conditioned on history, algorithm

output sequence has high entropy (≥ 0.5 bits, say):
▶ Send x to algorithm. Next epoch.

2. Otherwise, for all possible x, conditional entropy of outputs is low (≤ 0.5 bits)
which implies some particular output sequence occurs with probability ≥ 2

3 .
7.

This is pseudo-determinism.

Observe: entropy of random seed is limited by z, so case 1 can only occur ≥ 4z
times, a constant fraction of the time.8

7Say all output sequences have ≤ 2
3
probability. Then there exists a subset S of possible outputs with

net probability between 1
3
and 2

3
; H (X ∈ S) ≥ − 1

3
log 1

3
− 2

3
log 2

3
≥ 0.798.

8H (S) ≥ H (O1) + H (O2|O1) + . . .) ≥ 1
2
· 1
2
· 4z; last step is hiding expansion into events via

H (X|Y) =
∑

p (y)H (X|Y = y) and filtering by ≥ 4z type-1 steps.
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Formal theorem statements

Theorem 9.
Random tape δ-error adversarially robust algorithms for MIF (n, ℓ), with δ ≤ ℓ

27n ,
require space:

Ω

(
max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
ℓ
15
32

logn ℓ
)

Theorem 10.
There is a family of adversarially robust random tape algorithms, where for MIF (n, ℓ)
the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
3

d(d−1)

⌉
(log ℓ)2 + min

(
ℓ, log 1

δ

)
log ℓ

)

bits of space, where d = max
(
2,min

(
⌈log ℓ⌉ ,

⌊
2 log n/4

log(16ℓ)

⌋))
. When δ = 1/poly (n) a

weakened space bound is O
(
ℓlogn ℓ (log ℓ)2 + log ℓ

)
.
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Formal theorem statements

Theorem 11.
Pseudo-deterministic δ-error random oracle algorithms for MIF (n, ℓ) require

Ω

(
min

(
ℓ

log 2n
ℓ

+
√
ℓ,

ℓ log 1
2δ(

log 2n
ℓ

)2 log n
+

(
ℓ log 1

2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly (n) and ℓ = Ω(log n), this is

Ω

(
ℓ(

log 2n
ℓ

)2 + (ℓ log n)1/4
)

Theorem 12.
Adversarially robust random seed algorithms for MIF (n, ℓ) with error ≤ 1

6 require
space:

Ω

(
ℓ2

n
+

√
ℓ

(log n)3
+ ℓ1/5

)
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Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W
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Very simplified proof sketch

Generalization of deterministic lower bound from Stoeckl 2023

▶ For any state σ, integer q, let FCO (σ, q) be set of “most common outputs” after
q more inputs, with size wq

▶ Interpret partial input stream x ∈ [n]⋆ as a state of the “canonical protocol”; then
FCO (x, q) gives most common canonical outputs

▶ We can recursively define FCO and hence “common outputs” so that we can
prove:
▶ If σ is a random state resulting from input x, then w.h.p. FCO (σ, q) = FCO (x, q)
▶ FCO (x, q) ∩ x = ∅
▶ |FCO (x, q)| ≈ 2q/z , where the algorithm uses z bits of state

▶ Pseudo-determinism used here: output built from dependent evaluations

▶ Since n ≥ |FCO (ϵ, ℓ)| ≈ 2ℓ/z, it follows z ⪆ ℓ
log n
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FindCommonOutputs

▶ B is input to output function implemented by algorithm or canonical;
C ∈R [1, 2)d×N, x is stream prefix, and epochs are td + . . .+ t1 = ℓ; x has length
td + . . .+ tk+1 . S is set of possible canonical outputs. FCO (· · · , k) output size is
wk, with all wk ≥ 5

4wk−1.

FindCommonOutputs(B,C, x, k)9

if k = 1
return iteratively extracted w1 distinct elements, or error

Q← FCO (B,C, x ◦ ⟨1, . . . , tk⟩ , k− 1)
for each j ∈ S

fj ←
∣∣∣{y ∈ (Qtk) : j ∈ FCO (B,C, x ◦ sorted (y) , k− 1)

}∣∣∣
θ ← Ck,hwk−1/16 |S|
P←

{
j ∈ S : f(h)j ≥ θ

(|Q|
tk

)}
return first wk elements of Q ∪ P

9This includes a simplification not present in published work.



21/21

Related work

▶ Generic methods to convert static to adversarial setting: Ben-Eliezer, Jayaram,
Woodruff, and Yogev 2020; Ben-Eliezer and Yogev 2020, and recent diff. privacy
approaches (which use random-tape) Ben-Eliezer, Eden, and Onak 2022; Hassidim,
Kaplan, Mansour, Matias, and Stemmer 2020

▶ Static vs. adversarial separations: Assadi, Chen, and G. Sun 2022; Chakrabarti,
Ghosh, and Stoeckl 2022; Kaplan, Mansour, Nissim, and Stemmer 2021

▶ White-box adversaries: Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou
2022

▶ Read-once vs read-multiple use of randomness: Nisan 199310

▶ Other work on Missing Item Finding and variants: Chakrabarti, Ghosh, and Stoeckl
2022; Magen 2024; Stoeckl 2023, 2024; Tarui 2007

10Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical Computer
Science, 107(1):135–144, 1993
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