Finding Missing Items Requires Strong Form of Randomness

A. Chakrabarti¹ **M. Stoeckl**

¹Department of Computer Science, Dartmouth College¹

Computational Complexity Conference, 2024

¹ This work was supported in part by the National Science Foundation under award 2006589.

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

For streaming algorithms in the adversarial setting, are there significant separations in space complexity for the *different ways randomness can be used?*

Yes: Missing Item Finding

For streaming algorithms in the adversarial setting, are there significant separations in space complexity for the *different ways randomness can be used?*

Yes: Missing Item Finding

Outline

Problem and models

Missing Item Finding

Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Player Opponent

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$ ▶ *ℓ*-step game: ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$ ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Definition 1. $MIF(n, \ell)$ for $1 \leq \ell \leq n$

- ▶ *ℓ*-step game:
	- ▶ Receive: $a_i \in [n]$ ▶ Output: o_i \in $[n] \setminus \{a_1, \ldots a_i\}$
- ▶ Player is memory limited; opponent is not

Example 2 (On right). $MIF(n = 10, \ell = 6)$

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

Streaming algorithms

▶ **Streaming Algorithm:**

- ▶ limited memory
- ▶ processes sequence of elements one by one

Algorithm for fixed MIF(*n, ℓ*) input streams with *ℓ ≪ n*

```
S ← random subset of [n] of size O(1)for e from input stream
if e ∈ S:
    remove e from S
report: arbitrary element of S
```
▶ This talk: state machine view (ignores description/computational cost).

- ▶ Tracking error: algorithm makes output after every input, correct iff all outputs are
- ▶ Algorithm has cost *s* if worst-case memory usage is *s* bits
- An algorithm has error $\leq \delta$ in the:
	- **▶ static setting**: if it has error probability $\leq \delta$ for any input stream
	- ▶ **adversarial setting**: 2 if it has error probability *≤ δ* for *any adaptive adversary*
	- static setting *→* **classic algorithm** ; adversarial setting *→* **robust algorithm**

²*Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database*

- ▶ This talk: state machine view (ignores description/computational cost).
- ▶ Tracking error: algorithm makes output after every input, correct iff all outputs are
- ▶ Algorithm has cost *s* if worst-case memory usage is *s* bits
- An algorithm has error $\leq \delta$ in the:
	- **▶ static setting**: if it has error probability $\leq \delta$ for any input stream
	- ▶ **adversarial setting**: 2 if it has error probability *≤ δ* for *any adaptive adversary*
	- static setting *→* **classic algorithm** ; adversarial setting *→* **robust algorithm**

²*Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database*

- ▶ This talk: state machine view (ignores description/computational cost).
- ▶ Tracking error: algorithm makes output after every input, correct iff all outputs are
- ▶ Algorithm has cost *s* if worst-case memory usage is *s* bits
- An algorithm has error $\leq \delta$ in the:
	- **▶ static setting**: if it has error probability $\leq \delta$ for any input stream
	- ▶ **adversarial setting**: 2 if it has error probability *≤ δ* for *any adaptive adversary*
	- static setting *→* **classic algorithm** ; adversarial setting *→* **robust algorithm**

²*Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database*

- ▶ This talk: state machine view (ignores description/computational cost).
- ▶ Tracking error: algorithm makes output after every input, correct iff all outputs are
- ▶ Algorithm has cost *s* if worst-case memory usage is *s* bits
- An algorithm has error $< \delta$ in the:
	- **▶ static setting**: if it has error probability $\leq \delta$ for any input stream
	- ▶ **adversarial setting**: 2 if it has error probability *≤ δ* for *any adaptive adversary*

static setting *→* **classic algorithm** ; adversarial setting *→* **robust algorithm**

²*Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database Systems, pages 63–80, 2020*

- ▶ This talk: state machine view (ignores description/computational cost).
- ▶ Tracking error: algorithm makes output after every input, correct iff all outputs are
- ▶ Algorithm has cost *s* if worst-case memory usage is *s* bits
- An algorithm has error $< \delta$ in the:
	- **▶ static setting**: if it has error probability $\leq \delta$ for any input stream
	- ▶ **adversarial setting**: 2 if it has error probability *≤ δ* for *any adaptive adversary* static setting *→* **classic algorithm** ; adversarial setting *→* **robust algorithm**

²*Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database Systems, pages 63–80, 2020*

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

- ▶ Can choose next input element as function of preceding outputs
- \blacktriangleright This correlates input with private algorithm randomness

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

No randomness

- ▶ Exact counter
- ▶ Sparse recovery

▶ Greedy matching

- Initial state random
	- ▶ Linear sketch with random hash function
	- \triangleright Rabin fingerprint
	- ▶ Example MIF

Transitions random

- ▶ Reservoir sampling
- ▶ Morris Counter
- ▶ Noise / Differential privacy

Free access to long, persistent, random string

No randomness

- ▶ Exact counter
- ▶ Sparse recovery

▶ Greedy matching Initial state random

- ▶ Linear sketch with random hash function
- ▶ Rabin fingerprint
- ▶ Example MIF algo

Transitions random

- ▶ Reservoir sampling
- ▶ Morris Counter
- ▶ Noise / Differential privacy

Free access to long, persistent, random string

No randomness

- ▶ Exact counter
- ▶ Sparse recovery

▶ Greedy matching Initial state random

- ▶ Linear sketch with random hash function
- \blacktriangleright Rabin fingerprint
- ▶ Example MIF algo

Transitions random

- ▶ Reservoir sampling
- ▶ Morris Counter
- ▶ Noise / Differential privacy

Free access to long, persistent, random string

- No randomness
	- ▶ Exact counter
	- ▶ Sparse recovery
	- ▶ Greedy matching
- Initial state random
	- ▶ Linear sketch with random hash function
	- \blacktriangleright Rabin fingerprint
	- ▶ Example MIF algo

Transitions random

- ▶ Reservoir sampling
- ▶ Morris Counter
- ▶ Noise / Differential privacy

Free access to long, persistent, random string

Randomness type (almost) does not matter in static setting or with bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman's theorem*^a*

- ▶ Immediate corollary: any *ϵ*-error random oracle streaming algorithm with *Q* possible inputs has random seed emulation with $\epsilon (1 + \delta)$ error and $+O\left(\log\frac{\log Q}{\epsilon\delta}\right)$ bits of space
- ▶ Non-constructive
- \triangleright # adversaries = $\exp(\# \text{ streams})$

Pseudo-random generators:

- ▶ If one-way functions exist and adversary is poly-time,
- ▶ If adversary has less memory than algorithm ...
	- ▶ Nisan's PRG*^a*

*^a*Noam Nisan. Pseudorandom generators for space-bounded computation. In *Proc. 22nd Annual*

a Ilan Newman. Private vs. common random bits in communication complexity. *Inform. Process.*

Randomness type (almost) does not matter in static setting or with bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman's theorem*^a*

- ▶ Immediate corollary: any *ϵ*-error random oracle streaming algorithm with *Q* possible inputs has random seed emulation with $\epsilon (1 + \delta)$ error and $+O\left(\log\frac{\log Q}{\epsilon\delta}\right)$ bits of space
- ▶ Non-constructive
- \blacktriangleright # adversaries = $\exp(\# \text{ streams})$

Pseudo-random generators:

- ▶ If one-way functions exist and adversary is poly-time,
- ▶ If adversary has less memory than algorithm ...
	- ▶ Nisan's PRG*^a*

*^a*Noam Nisan. Pseudorandom generators for space-bounded computation. In *Proc. 22nd Annual*

a Ilan Newman. Private vs. common random bits in communication complexity. *Inform. Process. Lett.*, 39(2):67–71, 1991

Randomness type (almost) does not matter in static setting or with bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman's theorem*^a*

- ▶ Immediate corollary: any *ϵ*-error random oracle streaming algorithm with *Q* possible inputs has random seed emulation with $\epsilon (1 + \delta)$ error and $+O\left(\log\frac{\log Q}{\epsilon\delta}\right)$ bits of space
- ▶ Non-constructive
- \blacktriangleright # adversaries = $\exp(\# \text{ streams})$

Pseudo-random generators:

- ▶ If one-way functions exist and adversary is poly-time,
- \blacktriangleright If adversary has less memory than algorithm ...
	- ▶ Nisan's PRG*^a*

a Ilan Newman. Private vs. common random bits in communication complexity. *Inform. Process. Lett.*, 39(2):67–71, 1991

*^a*Noam Nisan. Pseudorandom generators for space-bounded computation. In *Proc. 22nd Annual ACM Symposium on the Theory of Computing*, pages 204–212, 1990

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations

Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

Main Result

For streaming algorithms in the adversarial setting, are there significant separations in space complexity for different ways randomness can be used?

MIFF (*n*² *A*) space, adversarial setting setting setting

Yes: for RT/RO and RS/RT

14/25

Main Result

For streaming algorithms in the adversarial setting, are there significant separations in space complexity for different ways randomness can be used?

MIF (*n, ℓ*) space, adversarial setting

Yes: for RT/RO and RS/RT

14/25

Specific results of this paper

- 1. Lower bound for random tape in adversarial setting
- 2. Upper bound for random tape in adversarial setting
- 3. Lower bound for *pseudo-deterministic* algorithms
- 4. Corollary via older work*^a* : =*⇒* lower bound for random *seed* in adversarial setting

Known results (this + Stoeckl 2023, 2024)

Other work: Magen 2024; Tarui 2007

*^a*Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In *Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 793–818, 2023. Full version at arXiv:2211.05170v1

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

Random tape algorithm (in adversarial setting): recursive structure

- ▶ Design: split universe [*n*] into *k* blocks
- ▶ Run random-subset algorithm to choose a safe block
- ▶ Inside chosen safe block: run this algorithm on domain [*n*/*k*]


```
Init()
```

```
Split [n] into B_1, \ldots, B_kS ← random subset of [k]
    c \leftarrow S.pop()A \leftarrow recursive instance on B_cUpdate(e)
```

```
if e \in B_i for any i in S:
    remove i from S
if e ∈ Bc:
    A.Update(e)
    if A is done:
         c \leftarrow S.pop()?
         A \leftarrow recursive instance on B_creport: A's output
```
Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

Random tape lower bound (in adversarial setting): recursive structure

Lemma 3 (Stoeckl 2023).

Robust algorithms for MIF (n, ℓ) *with* $\leq \frac{3}{4}$ $\frac{3}{4}$ error probability require $\Omega\left(\ell^2/n\right)$ space

Lemma 4.

Lower bound for a z-bit robust random tape algorithm for MIF (*n, ℓ*) *depends on the lower bound for MIF* (*w, t*) *with*

$$
w = \Theta\left(\frac{zn}{\ell}\right) \qquad \qquad t = \Theta\left(\frac{\ell}{z}\right)
$$

Theorem 5.

Robust random tape algorithms for MIF (*n, ℓ*) *require space:*

$$
\Omega\left(\max_{k}\left(\frac{\ell^{k+1}}{n}\right)^{\frac{2}{k^2+3k-2}}\right)=\Omega\left(\ell^{\frac{15}{32}\log_{n}\ell}\right)
$$

Reduction step: searching for information must stop

- 1. Adversary sends *ℓ*/2 random elements
	- ▶ Let *ρ* be resulting algorithm state
	- ▶ Not enough space to store all random elements: algorithm must overestimate, and only considers elements in a set *H^ρ* to be *safe*
	- ▶ Typically $|H_{\rho}|$ = $O\left(\frac{zn}{\ell}\right)$
- 2. Adversary tries to identify $H₀$, in $\Theta(z)$ epochs
	- \blacktriangleright Have a possible set H_{σ} for each possible state σ ; making an output outside H_{σ} is risky if $\sigma = \rho$
	- ▶ Each epoch, either:
		- (a) There exists a "sub-adversary" for next $\Theta\left(\frac{\ell}{z}\right)$ steps which likely rules out half the remaining candidate *H^σ* values. If so, run it!
		- (b) There exists a set *W* of size $O\left(\frac{zn}{\ell}\right)$ which probably contains *all* the next $\Theta\left(\frac{\ell}{z}\right)$ algorithm outputs, no matter what
	- ▶ Case (a) is unlikely to happen Θ (*z*) times might end up ruling out *H^ρ* itself
	- ▶ Case (b): DONE algorithm solves $MIF\left(O\left(\frac{zn}{\ell}\right), \Theta\left(\frac{\ell}{z}\right)\right)$ with inputs in W

Reduction step: searching for information must stop

- 1. Adversary sends *ℓ*/2 random elements
	- ▶ Let *ρ* be resulting algorithm state
	- ▶ Not enough space to store all random elements: algorithm must overestimate, and only considers elements in a set *H^ρ* to be *safe*
	- ▶ Typically $|H_{\rho}|$ = $O\left(\frac{zn}{\ell}\right)$
- 2. Adversary tries to identify $H₀$, in $\Theta(z)$ epochs
	- $▶$ Have a possible set H_σ for each possible state σ ; making an output outside H_σ is risky if $\sigma = \rho$
	- ▶ Each epoch, either:
		- (a) There exists a "sub-adversary" for next $\Theta\left(\frac{\ell}{2}\right)$ steps which likely rules out half the remaining candidate H_{σ} values. If so, run it!
		- (b) There exists a set *W* of size $O\left(\frac{zn}{\ell}\right)$ which probably contains *all* the next $\Theta\left(\frac{\ell}{z}\right)$ algorithm outputs, no matter what
	- ▶ Case (a) is unlikely to happen Θ (*z*) times might end up ruling out *H^ρ* itself
	- ▶ Case (b): DONE algorithm solves $MIF(\mathcal{O}(\frac{zn}{\ell}), \Theta(\frac{\ell}{z}))$ with inputs in W

Outline

Problem and models

Missing Item Finding Adversarial setting for streaming algorithms Types of randomness for streaming algorithms

Our Results/Contribution

Separations Random tape algorithm Random tape lower bound Pseudo-deterministic lower bound

Open problems

What is pseudo-determinism?

▶ Randomized algorithm *A* that behaves like a deterministic one

- ▶ There exists **canonical output function** *f^A* from inputs to outputs so that $Pr[\mathcal{A}(x) = f_{\mathcal{A}}(x)] \ge 1 - \epsilon$ for all possible inputs *x*
- \triangleright Pseudo-deterministic streaming algorithms:³
	- ▶ If correctness relation is a function, correct algorithms are pseudo-deterministic
	- \blacktriangleright Automatically work in the adversarial setting
	- ▶ Newman's theorem can apply

³For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In *Proc. 20th Conference*

What is pseudo-determinism?

▶ Randomized algorithm *A* that behaves like a deterministic one

- ▶ There exists **canonical output function** *f^A* from inputs to outputs so that $\Pr[\mathcal{A}(x) = f_{\mathcal{A}}(x)] \ge 1 - \epsilon$ for all possible inputs *x*
- \blacktriangleright Pseudo-deterministic streaming algorithms:³
	- ▶ If correctness relation is a function, correct algorithms are pseudo-deterministic
	- \blacktriangleright Automatically work in the adversarial setting
	- ▶ Newman's theorem can apply

³For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In *Proc. 20th Conference on Innovations in Theoretical Computer Science*, volume 151, 79:1–79:25, 2020

Pseudo-deterministic and random seed lower bounds

Theorem 6.

Pseudo-deterministic random-oracle algorithms for MIF (*n, ℓ*) *with error* $\delta = 1/\text{poly}(n)$ *and* $\ell = \Omega(\log n)$ *require space*

$$
\Omega\left(\frac{\ell}{(\log n)^2}\right)
$$

Theorem 7 (Stoeckl 2024).

A random seed streaming algorithm for adversarial setting with z bits of state processing a stream of length ℓ can be made to probably "behave pseudo-deterministically" for some contiguous stretch of Θ (*ℓ*/*z*) *inputs.*

Corollary 8.

Random seed, adversarial setting, $\leq 1/6$ *error, MIF* (n, ℓ) *algorithms require space*⁴

$$
\Omega\left(\frac{\ell^2}{n} + \sqrt{\frac{\ell}{\left(\log n\right)^3}}\right)
$$

⁴ The *ℓ* 2 /*n* term comes from Lemma 3.

Open problems

 \triangleright Mirror Game: like MIF, but a) neither player can repeat numbers b) $n = 2\ell$ c) player starts⁵

▶ Unknown: do space-efficient algorithms need a random oracle?

▶ Can we separate random *seed* and *tape* for adversarial setting turnstile *L*₀ estimation algorithms? Pseudo-deterministic gap hamming communication complexity still open.⁶

⁵ Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In *Proc. 10th Conference on Innovations in Theoretical Computer Science*, 36:1–36:14, 2018, Feige 2019; Magen and Naor 2022; Menuhin and Naor 2022

Open problems

- \triangleright Mirror Game: like MIF, but a) neither player can repeat numbers b) $n = 2\ell$ c) player starts⁵
	- ▶ Unknown: do space-efficient algorithms need a random oracle?
- ▶ Can we separate random *seed* and *tape* for adversarial setting turnstile *L*₀ estimation algorithms? Pseudo-deterministic gap hamming communication complexity still open.⁶

⁵ Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In *Proc. 10th Conference on Innovations in Theoretical Computer Science*, 36:1–36:14, 2018, Feige 2019; Magen and Naor 2022; Menuhin and Naor 2022

⁶ *Some progress:* Dmytro Gavinsky. Unambiguous parity-query complexity. *arXiv preprint arXiv:2401.11274*, 2024

Conclusion

▶ Unlike in the static setting, the example of Missing Item Finding shows that space-efficient streaming algorithms in the adversarial setting may require a random tape or random oracle.

Lower bound methods:

- ▶ Random tape: Recursive structure of MIF algorithms + adversary iteratively searching for information on past states + a useful property when search cannot progress
- ▶ Random seed: use semi-generic reduction to pseudo-deterministic
- ▶ Pseudo-deterministic: generalize deterministic proof + alternate establishing canonical and actual algorithm properties

Bibliography I

 \exists

F

F

∎

Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff, and Samson Zhou. The white-box adversarial data stream model. In *Proc. 41st ACM Symposium on Principles of Database Systems*, pages 15–27, 2022.

Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring in the streaming model. In *Proc. 54th Annual ACM Symposium on the Theory of Computing*, pages 261–274, 2022.

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense-sparse trade-offs. In *Symposium on Simplicity in Algorithms (SOSA)*, pages 214–227, 2022.

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In *Proc. 39th ACM Symposium on Principles of Database Systems*, pages 63–80, 2020.

Bibliography II

F.

E.

F

 \equiv

 \blacksquare

Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In *Proc. 39th ACM Symposium on Principles of Database Systems*, pages 49–62. ACM, 2020.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph streams. In *Proc. 13th Conference on Innovations in Theoretical Computer Science*, 37:1–37:23, 2022.

Uriel Feige. A randomized strategy in the mirror game. *arXiv preprint arXiv:1901.07809*, 2019.

Dmytro Gavinsky. Unambiguous parity-query complexity. *arXiv preprint arXiv:2401.11274*, 2024.

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In *Proc. 20th Conference on Innovations in Theoretical Computer Science*, volume 151, 79:1–79:25, 2020.

Bibliography III

F

Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In *Proc. 10th Conference on Innovations in Theoretical Computer Science*, 36:1–36:14, 2018.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversarially robust streaming algorithms via differential privacy. In *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming from oblivious streaming using the bounded storage model. In *Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III*, volume 12827 of *Lecture Notes in Computer Science*, pages 94–121. Springer, 2021.

Bibliography IV

H

F.

F

F

F

Roey Magen. Are we still missing an item? *arXiv preprint arXiv:2401.06547*, 2024.

Roey Magen and Moni Naor. Mirror games against an open book player. In *11th International Conference on Fun with Algorithms (FUN 2022)*, volume 226, 20:1–20:12, 2022.

Boaz Menuhin and Moni Naor. Keep that card in mind: card guessing with limited memory. In *Proc. 13th Conference on Innovations in Theoretical Computer Science*, 107:1–107:28, 2022.

Ilan Newman. Private vs. common random bits in communication complexity. *Inform. Process. Lett.*, 39(2):67–71, 1991.

Noam Nisan. Pseudorandom generators for space-bounded computation. In *Proc. 22nd Annual ACM Symposium on the Theory of Computing*, pages 204–212, 1990.

Bibliography V

R

 \blacksquare

F

F

Noam Nisan. On read once vs. multiple access to randomness in logspace. *Theoretical Computer Science*, 107(1):135–144, 1993. Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In *Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 793–818, 2023. Full version at arXiv:2211.05170v1.

Manuel Stoeckl. *On adaptivity and randomness for streaming algorithms*. PhD thesis, Dartmouth College, 2024.

Jun Tarui. Finding a duplicate and a missing item in a stream. In *Proc. 4th International Conference on Theory and Applications of Models of Computation*, pages 128–135, 2007.

Bonus slides

- 1. State machine views (of randomness types, models.)
- 2. Random oracle algorithm explanation
- 3. Random-seed to pseudo-deterministic explanation
- 4. Full statements of main theorems
- 5. Reduction step for random tape lower bound
- 6. Simplified FindCommonOutputs
- 7. Related work

State machine perspective: static setting

State machine perspective: adversarial setting

State machine perspective: white-box adversarial setting

State machine perspective: deterministic

State machine perspective: random seed

State machine perspective: random tape

State machine perspective: random oracle

Random oracle algorithm

- ▶ In "random sample" approach, *S* can be drawn from oracle randomness
- ▶ If always outputting *least* available element of *S*, can efficiently encode removed elements as union of contiguous and sparse sets

Random seed to pseudo-deterministic

Consider adversary with $\Theta(z)$ epochs of length $t = \Theta(\ell/z)$.

For each epoch:

- 1. If *∃* subsequence *x* of length *t* for which, conditioned on history, algorithm output sequence has high entropy (*≥* 0*.*5 bits, say):
	- ▶ Send *x* to algorithm. Next epoch.
- 2. Otherwise, for all possible *x*, conditional entropy of outputs is low (*≤* 0*.*5 bits) which implies some particular output sequence occurs with probability $\geq \frac{2}{3}$ $\frac{2}{3}$. . . This is pseudo-determinism.

Observe: entropy of random seed is limited by *z*, so case 1 can only occur *≥* 4*z* times, a constant fraction of the time. $8⁸$

⁷Say all output sequences have $\leq \frac{2}{3}$ probability. Then there exists a subset *S* of possible outputs with net probability between $\frac{1}{3}$ and $\frac{2}{3}$; $H(X \in S) \ge -\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3} \ge 0.798$. ${}^8H(S) \geq H(O_1) + H(O_2|O_1) + \ldots) \geq \frac{1}{2} \cdot \frac{1}{2} \cdot 4$ z; last step is hiding expansion into events via *H* (*X*|*Y*) = $\sum p(y)$ *H* (*X*|*Y* = *y*) and filtering by \geq 4*z* type-1 steps.

Formal theorem statements

Theorem 9.

 R andom tape δ -error adversarially robust algorithms for MIF (n,ℓ) , with $\delta \leq \frac{\ell}{2^7}$ 2 7*n , require space:*

$$
\Omega\left(\max_{k\in\mathbb{N}}\left(\frac{\ell^{k+1}}{n}\right)^{\frac{2}{k^2+3k-2}}\right)=\Omega\left(\ell^{\frac{15}{32}\log_{n}\ell}\right)
$$

Theorem 10.

There is a family of adversarially robust random tape algorithms, where for MIF (*n, ℓ*) *the corresponding algorithm has ≤ δ error and uses*

$$
O\left(\left\lceil \frac{(4\ell)^{\frac{2}{d-1}}}{(n/4)^{\frac{3}{d(d-1)}}} \right\rceil (\log \ell)^2 + \min\left(\ell, \log\frac{1}{\delta}\right)\log \ell\right)
$$

bits of space, where $d = \max\left(2, \min\left(\lceil\log\ell\rceil, \sqrt{2\frac{\log n/4}{\log(16\ell)}}\right)\right)$ $\frac{\log n/4}{\log(16\ell)}$)). When $\delta = 1/p$ oly (n) a *weakened space bound is 0* $(\ell^{\log_n \ell} (\log \ell)^2 + \log \ell)$ *.*

Formal theorem statements

Theorem 11.

Pseudo-deterministic δ-error random oracle algorithms for MIF (*n, ℓ*) *require*

$$
\Omega\left(\min\left(\frac{\ell}{\log \frac{2n}{\ell}} + \sqrt{\ell}, \frac{\ell \log \frac{1}{2\delta}}{\left(\log \frac{2n}{\ell}\right)^2\log n} + \left(\ell \log \frac{1}{2\delta}\right)^{1/4}\right)\right)
$$

bits of space when $\delta \leq \frac{1}{3}$ $\frac{1}{3}$ *. In particular, when* $\delta = 1/\text{poly}(n)$ and $\ell = \Omega(\log n)$ *, this is*

$$
\Omega\left(\frac{\ell}{\left(\log \frac{2n}{\ell}\right)^2} + (\ell \log n)^{1/4}\right)
$$

Theorem 12.

Adversarially robust random seed algorithms for MIF (n,ℓ) *with error* $\leq \frac{1}{6}$ $\frac{1}{6}$ require *space:*

$$
\Omega\left(\frac{\ell^2}{n} + \sqrt{\frac{\ell}{(\log n)^3}} + \ell^{1/5}\right)
$$

Reduction step: searching for information must stop

- 1. Adversary sends *ℓ*/2 random elements
	- ▶ Let *ρ* be resulting algorithm state
	- ▶ Not enough space to store all random elements: algorithm must overestimate, and only considers elements in a set *H^ρ* to be *safe*
	- ▶ Typically $|H_{\rho}|$ = $O\left(\frac{zn}{\ell}\right)$
- 2. Adversary tries to identify $H₀$, in $\Theta(z)$ epochs
	- \blacktriangleright Have a possible set H_{σ} for each possible state σ ; making an output outside H_{σ} is risky if $\sigma = \rho$
	- ▶ Each epoch, either:
		- (a) There exists a "sub-adversary" for next $\Theta\left(\frac{\ell}{z}\right)$ steps which likely rules out half the remaining candidate *H^σ* values. If so, run it!
		- (b) There exists a set *W* of size $O\left(\frac{zn}{\ell}\right)$ which probably contains *all* the next $\Theta\left(\frac{\ell}{z}\right)$ algorithm outputs, no matter what
	- ▶ Case (a) is unlikely to happen Θ (*z*) times might end up ruling out *H^ρ* itself
	- ▶ Case (b): DONE algorithm solves $MIF\left(O\left(\frac{zn}{\ell}\right), \Theta\left(\frac{\ell}{z}\right)\right)$ with inputs in W

Reduction step: searching for information must stop

- 1. Adversary sends *ℓ*/2 random elements
	- ▶ Let *ρ* be resulting algorithm state
	- ▶ Not enough space to store all random elements: algorithm must overestimate, and only considers elements in a set *H^ρ* to be *safe*
	- ▶ Typically $|H_{\rho}|$ = $O\left(\frac{zn}{\ell}\right)$
- 2. Adversary tries to identify $H₀$, in $\Theta(z)$ epochs
	- $▶$ Have a possible set H_σ for each possible state σ ; making an output outside H_σ is risky if $\sigma = \rho$
	- ▶ Each epoch, either:
		- (a) There exists a "sub-adversary" for next $\Theta\left(\frac{\ell}{2}\right)$ steps which likely rules out half the remaining candidate H_{σ} values. If so, run it!
		- (b) There exists a set *W* of size $O\left(\frac{zn}{\ell}\right)$ which probably contains *all* the next $\Theta\left(\frac{\ell}{z}\right)$ algorithm outputs, no matter what
	- ▶ Case (a) is unlikely to happen Θ (*z*) times might end up ruling out *H^ρ* itself
	- ▶ Case (b): DONE algorithm solves $MIF(\mathcal{O}(\frac{zn}{\ell}), \Theta(\frac{\ell}{z}))$ with inputs in W

Very simplified proof sketch

Generalization of deterministic lower bound from Stoeckl 2023

- ▶ For any state *σ*, integer *q*, let *FCO* (*σ, q*) be set of "most common outputs" after *q* more inputs, with size *w^q*
- ▶ Interpret partial input stream $x \in [n]^*$ as a state of the "canonical protocol"; then *FCO* (*x, q*) gives most common canonical outputs
- ▶ We can recursively define FCO and hence "common outputs" so that we can prove:
	- ▶ If σ is a random state resulting from input *x*, then w.h.p. *FCO* (σ , *q*) = *FCO* (*x*, *q*)
	- ▶ $FCO(x, q) \cap x = ∅$
	- ▶ $|FCO(x, q)| \approx 2^{q/z}$, where the algorithm uses *z* bits of state
		- ▶ Pseudo-determinism used here: output built from dependent evaluations
- ▶ Since $n \geq |FCO(\epsilon,\ell)| \approx 2^{\ell/z}$, it follows $z \gtrapprox \frac{\ell}{\log n}$

FindCommonOutputs

▶ *B* is input to output function implemented by algorithm or canonical; $C \in_R [1,2)^{d \times N}$, x is stream prefix, and epochs are $t_d + \ldots + t_1 = \ell$; x has length $t_d + \ldots + t_{k+1}$. *S* is set of possible canonical outputs. *FCO* (\cdots , *k*) output size is w_k , with all $w_k \geq \frac{5}{4}$ $\frac{5}{4}W_{k-1}$.

FindCommonOutputs $(B, C, x, k)^9$

if $k=1$

return iteratively extracted w_1 distinct elements, or error $Q \leftarrow FCO(B, C, x \circ \langle 1, \ldots, t_k \rangle, k-1)$ for each $j \in S$ $f_j \leftarrow$ $\left\{ y \in {Q \choose f_k} : j \in FCO(B, C, x \circ \text{sorted}(y), k-1) \right\}$ $\theta \leftarrow C_{k}$ ^{*hW*_{*k*−1}</sub>/16 *|S|*} $P \leftarrow \left\{ j \in S : f_j^{(h)} \geq \theta \binom{|Q|}{t_k} \right\}$ return first *w^k* elements of *Q ∪ P*

 9 This includes a simplification not present in published work.

Related work

- ▶ Generic methods to convert static to adversarial setting: Ben-Eliezer, Jayaram, Woodruff, and Yogev 2020; Ben-Eliezer and Yogev 2020, and recent diff. privacy approaches (which use random-tape) Ben-Eliezer, Eden, and Onak 2022; Hassidim, Kaplan, Mansour, Matias, and Stemmer 2020
- ▶ Static vs. adversarial separations: Assadi, Chen, and G. Sun 2022; Chakrabarti, Ghosh, and Stoeckl 2022; Kaplan, Mansour, Nissim, and Stemmer 2021
- ▶ White-box adversaries: Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou 2022
- \blacktriangleright Read-once vs read-multiple use of randomness: Nisan 1993¹⁰
- ▶ Other work on Missing Item Finding and variants: Chakrabarti, Ghosh, and Stoeckl 2022; Magen 2024; Stoeckl 2023, 2024; Tarui 2007

¹⁰Noam Nisan. On read once vs. multiple access to randomness in logspace. *Theoretical Computer Science*, 107(1):135–144, 1993