
1/25

Finding Missing Items Requires Strong Form of Randomness

A. Chakrabarti1 M. Stoeckl

1Department of Computer Science, Dartmouth College1

Computational Complexity Conference, 2024

Deterministic Random seed Random tape Random oracle

1
This work was supported in part by the National Science Foundation under award 2006589.

2/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

3/25

Goal

For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for the different ways randomness can be
used?

Yes: Missing Item Finding

3/25

Goal

For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for the different ways randomness can be
used?

Yes: Missing Item Finding

4/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
78

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
88

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
88

4

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9

8
4

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9

8
4
4

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4

8
4
4

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4

8
4
4
3

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4
6

8
4
4
3

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4
6

8
4
4
3
5

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4
6
5

8
4
4
3
5

Two player game ≡ Streaming algorithm with adaptive adversary

5/25

The Missing Item Finding Problem

Definition 1.
MIF(n, ℓ) for 1 ≤ ℓ < n

▶ ℓ-step game:
▶ Receive: ai ∈ [n]
▶ Output: oi ∈ [n] \ {a1, . . . ai}

▶ Player is memory limited;
opponent is not

Example 2 (On right).
MIF (n = 10, ℓ = 6)

Player Opponent
7
8
9
4
6
5

8
4
4
3
5
1

Two player game ≡ Streaming algorithm with adaptive adversary

6/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

7/25

Streaming algorithms

▶ Streaming Algorithm:
▶ limited memory
▶ processes sequence of elements one by one

Algorithm for fixed MIF(n, ℓ) input streams with ℓ≪ n

S← random subset of [n] of size O (1)
for e from input stream

if e ∈ S:
remove e from S

report: arbitrary element of S

8/25

Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020

8/25

Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020

8/25

Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020

8/25

Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020

8/25

Performance requirements

▶ This talk: state machine view (ignores description/computational cost).

▶ Tracking error: algorithm makes output after every input, correct iff all outputs
are

▶ Algorithm has cost s if worst-case memory usage is s bits

▶ An algorithm has error ≤ δ in the:
▶ static setting: if it has error probability ≤ δ for any input stream
▶ adversarial setting:2 if it has error probability ≤ δ for any adaptive adversary

static setting → classic algorithm ; adversarial setting → robust algorithm

2Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
S={2,4,7}

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
S={2,4,7}

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6S={2,4,7}

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
62

S={2,4,7}

S={2,4,7}

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
22

S={2,4,7}

S={2,4,7}

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
22

S={2,4,7}

S={2,4,7}

S={4,7}
4

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
2
4

2
S={2,4,7}

S={2,4,7}

S={4,7}
4

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
2
4

2
S={2,4,7}

S={2,4,7}

S={4,7}

S={7}

4
7

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
2
4
7

2
S={2,4,7}

S={2,4,7}

S={4,7}

S={7}

4
7

9/25

The adaptive adversary
▶ Can choose next input element as function of preceding outputs

▶ This correlates input with private algorithm randomness

Algorithm Adversary
6
2
4
7

2
S={2,4,7}

S={2,4,7}

S={4,7}

S={7}

4
7

kaboom

10/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

11/25

Four natural categories of streaming algorithms, by randomness type

Deterministic

No randomness
▶ Exact counter
▶ Sparse recovery
▶ Greedy

matching

Random seed

Initial state random
▶ Linear sketch

with random
hash function

▶ Rabin
fingerprint

▶ Example MIF
algo

Random tape

Transitions random
▶ Reservoir

sampling
▶ Morris Counter
▶ Noise /

Differential
privacy

Random oracle

Free access to long,
persistent, random
string
▶ Linear sketch

with i.i.d. entries

11/25

Four natural categories of streaming algorithms, by randomness type

Deterministic

No randomness
▶ Exact counter
▶ Sparse recovery
▶ Greedy

matching

Random seed

Initial state random
▶ Linear sketch

with random
hash function

▶ Rabin
fingerprint

▶ Example MIF
algo

Random tape

Transitions random
▶ Reservoir

sampling
▶ Morris Counter
▶ Noise /

Differential
privacy

Random oracle

Free access to long,
persistent, random
string
▶ Linear sketch

with i.i.d. entries

11/25

Four natural categories of streaming algorithms, by randomness type

Deterministic

No randomness
▶ Exact counter
▶ Sparse recovery
▶ Greedy

matching

Random seed

Initial state random
▶ Linear sketch

with random
hash function

▶ Rabin
fingerprint

▶ Example MIF
algo

Random tape

Transitions random
▶ Reservoir

sampling
▶ Morris Counter
▶ Noise /

Differential
privacy

Random oracle

Free access to long,
persistent, random
string
▶ Linear sketch

with i.i.d. entries

11/25

Four natural categories of streaming algorithms, by randomness type

Deterministic

No randomness
▶ Exact counter
▶ Sparse recovery
▶ Greedy

matching

Random seed

Initial state random
▶ Linear sketch

with random
hash function

▶ Rabin
fingerprint

▶ Example MIF
algo

Random tape

Transitions random
▶ Reservoir

sampling
▶ Morris Counter
▶ Noise /

Differential
privacy

Random oracle

Free access to long,
persistent, random
string
▶ Linear sketch

with i.i.d. entries

12/25

Randomness type (almost) does not matter in static setting or with
bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman’s theorema

▶ Immediate corollary: any ϵ-error
random oracle streaming algorithm
with Q possible inputs has random
seed emulation with ϵ (1 + δ) error

and +O
(

log logQ
ϵδ

)
bits of space

▶ Non-constructive
▶ # adversaries = exp (# streams)

aIlan Newman. Private vs. common random bits
in communication complexity. Inform. Process.
Lett., 39(2):67–71, 1991

Pseudo-random generators:
▶ If one-way functions exist and

adversary is poly-time,
▶ If adversary has less memory than

algorithm ...
▶ Nisan’s PRGa

aNoam Nisan. Pseudorandom generators for
space-bounded computation. In Proc. 22nd Annual
ACM Symposium on the Theory of Computing,
pages 204–212, 1990

12/25

Randomness type (almost) does not matter in static setting or with
bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman’s theorema

▶ Immediate corollary: any ϵ-error
random oracle streaming algorithm
with Q possible inputs has random
seed emulation with ϵ (1 + δ) error

and +O
(

log logQ
ϵδ

)
bits of space

▶ Non-constructive
▶ # adversaries = exp (# streams)

aIlan Newman. Private vs. common random bits
in communication complexity. Inform. Process.
Lett., 39(2):67–71, 1991

Pseudo-random generators:
▶ If one-way functions exist and

adversary is poly-time,
▶ If adversary has less memory than

algorithm ...
▶ Nisan’s PRGa

aNoam Nisan. Pseudorandom generators for
space-bounded computation. In Proc. 22nd Annual
ACM Symposium on the Theory of Computing,
pages 204–212, 1990

12/25

Randomness type (almost) does not matter in static setting or with
bounded adversaries

Emulate random oracle or random tape algorithm using random seed

Newman’s theorema

▶ Immediate corollary: any ϵ-error
random oracle streaming algorithm
with Q possible inputs has random
seed emulation with ϵ (1 + δ) error

and +O
(

log logQ
ϵδ

)
bits of space

▶ Non-constructive
▶ # adversaries = exp (# streams)

aIlan Newman. Private vs. common random bits
in communication complexity. Inform. Process.
Lett., 39(2):67–71, 1991

Pseudo-random generators:
▶ If one-way functions exist and

adversary is poly-time,
▶ If adversary has less memory than

algorithm ...
▶ Nisan’s PRGa

aNoam Nisan. Pseudorandom generators for
space-bounded computation. In Proc. 22nd Annual
ACM Symposium on the Theory of Computing,
pages 204–212, 1990

13/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

14/25

Main Result
For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for different ways randomness can be used?

MIF (n, ℓ) space, adversarial setting

ℓ = 2
√

log n ℓ =
√
n

Random oracle Θ̃ (1) Θ̃ (1)

Random tape Θ̃ (1) Ω̃
(
ℓ1/4

)
Random seed Θ̃

(√
ℓ
)

Θ̃
(√

ℓ
)

Deterministic Θ̃ (ℓ) Θ̃ (ℓ)

(Hiding polylog(n, ℓ) factors; at error δ = 1
n2)

Yes: for RT/RO and RS/RT

1 n1/2 n3/5n2/3 n
Stream length ℓ

1

n1/8
n1/6

n1/5

n1/3

n

Sp
ac

e

Deterministic
Random seed
Random tape
Random oracle

Adversarial setting space complexity for MIF(n,ℓ)

14/25

Main Result
For streaming algorithms in the adversarial setting, are there significant
separations in space complexity for different ways randomness can be used?

MIF (n, ℓ) space, adversarial setting

ℓ = 2
√

log n ℓ =
√
n

Random oracle Θ̃ (1) Θ̃ (1)

Random tape Θ̃ (1) Ω̃
(
ℓ1/4

)
Random seed Θ̃

(√
ℓ
)

Θ̃
(√

ℓ
)

Deterministic Θ̃ (ℓ) Θ̃ (ℓ)

(Hiding polylog(n, ℓ) factors; at error δ = 1
n2)

Yes: for RT/RO and RS/RT

1 n1/2 n3/5n2/3 n
Stream length ℓ

1

n1/8
n1/6

n1/5

n1/3

n

Sp
ac

e

Deterministic
Random seed
Random tape
Random oracle

Adversarial setting space complexity for MIF(n,ℓ)

15/25

Specific results of this paper

1. Lower bound for random tape in
adversarial setting

2. Upper bound for random tape in
adversarial setting

3. Lower bound for
pseudo-deterministic algorithms

4. Corollary via older worka: =⇒ lower
bound for random seed in adversarial
setting

aManuel Stoeckl. Streaming algorithms for the
missing item finding problem. In Proc. 34th Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 793–818, 2023. Full version at
arXiv:2211.05170v1

Known results (this + Stoeckl 2023, 2024)

Setting Type Space

Static Seed Θ̃ (1)

Adversarial Oracle Θ̃
(
ℓ2/n+ 1

)
Adversarial Tape Ω

(
ℓ
15
32

logn ℓ
)

Õ
(
ℓlogn ℓ

)
Adversarial Seed Θ̃

(
ℓ2/n+

√
ℓ
)

Pseudo-det. Oracle Θ̃ (ℓ)

Any Det. Θ̃ (ℓ)

(Hiding polylog(n, ℓ) factors; at error δ = 1
n2)

Other work: Magen 2024; Tarui 2007

16/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

17/25

Random tape algorithm (in adversarial setting): recursive structure

▶ Design: split universe [n] into k
blocks

▶ Run random-subset algorithm
to choose a safe block

▶ Inside chosen safe block: run
this algorithm on domain [n/k]

Init()

Split [n] into B1,...,Bk

S ← random subset of [k]
c ← S.pop()
A ← recursive instance on Bc

Update(e)

if e ∈ Bi for any i in S:
remove i from S

if e ∈ Bc:
A.Update(e)
if A is done:

c ← S.pop()?
A ← recursive instance on Bc

report: A's output

18/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

19/25

Random tape lower bound (in adversarial setting): recursive structure

Lemma 3 (Stoeckl 2023).
Robust algorithms for MIF (n, ℓ) with ≤ 3

4 error probability require Ω
(
ℓ2/n

)
space

Lemma 4.
Lower bound for a z-bit robust random tape algorithm for MIF (n, ℓ) depends on the
lower bound for MIF (w, t) with

w = Θ
(zn
ℓ

)
t = Θ

(
ℓ

z

)
Theorem 5.
Robust random tape algorithms for MIF (n, ℓ) require space:

Ω

(
max

k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
ℓ
15
32

logn ℓ
)

20/25

Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W

20/25

Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W

21/25

Outline

Problem and models
Missing Item Finding
Adversarial setting for streaming algorithms
Types of randomness for streaming algorithms

Our Results/Contribution
Separations
Random tape algorithm
Random tape lower bound
Pseudo-deterministic lower bound

Open problems

22/25

What is pseudo-determinism?

▶ Randomized algorithm A that behaves like a deterministic one
▶ There exists canonical output function fA from inputs to outputs so that

Pr [A (x) = fA (x)] ≥ 1− ϵ for all possible inputs x
▶ Pseudo-deterministic streaming algorithms:3

▶ If correctness relation is a function, correct algorithms are pseudo-deterministic
▶ Automatically work in the adversarial setting
▶ Newman’s theorem can apply

3For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman,
Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th Conference
on Innovations in Theoretical Computer Science, volume 151, 79:1–79:25, 2020

22/25

What is pseudo-determinism?

▶ Randomized algorithm A that behaves like a deterministic one
▶ There exists canonical output function fA from inputs to outputs so that

Pr [A (x) = fA (x)] ≥ 1− ϵ for all possible inputs x
▶ Pseudo-deterministic streaming algorithms:3

▶ If correctness relation is a function, correct algorithms are pseudo-deterministic
▶ Automatically work in the adversarial setting
▶ Newman’s theorem can apply

3For a paper introducing pseudo-determinism to streaming, see: Shafi Goldwasser, Ofer Grossman,
Sidhanth Mohanty, and David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th Conference
on Innovations in Theoretical Computer Science, volume 151, 79:1–79:25, 2020

23/25

Pseudo-deterministic and random seed lower bounds
Theorem 6.
Pseudo-deterministic random-oracle algorithms for MIF (n, ℓ) with error
δ = 1/poly (n) and ℓ = Ω(log n) require space

Ω

(
ℓ

(log n)2
)

Theorem 7 (Stoeckl 2024).
A random seed streaming algorithm for adversarial setting with z bits of state
processing a stream of length ℓ can be made to probably “behave
pseudo-deterministically” for some contiguous stretch of Θ(ℓ/z) inputs.

Corollary 8.
Random seed, adversarial setting, ≤ 1/6 error, MIF (n, ℓ) algorithms require space4

Ω

(
ℓ2

n
+

√
ℓ

(log n)3

)
4The ℓ2/n term comes from Lemma 3.

24/25

Open problems

▶ Mirror Game: like MIF, but a) neither player can repeat numbers b) n = 2ℓ c)
player starts5

▶ Unknown: do space-efficient algorithms need a random oracle?

▶ Can we separate random seed and tape for adversarial setting turnstile L0
estimation algorithms? Pseudo-deterministic gap hamming communication
complexity still open.6

5Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc. 10th
Conference on Innovations in Theoretical Computer Science, 36:1–36:14, 2018, Feige 2019; Magen and
Naor 2022; Menuhin and Naor 2022

6Some progress: Dmytro Gavinsky. Unambiguous parity-query complexity. arXiv preprint
arXiv:2401.11274, 2024

24/25

Open problems

▶ Mirror Game: like MIF, but a) neither player can repeat numbers b) n = 2ℓ c)
player starts5

▶ Unknown: do space-efficient algorithms need a random oracle?

▶ Can we separate random seed and tape for adversarial setting turnstile L0
estimation algorithms? Pseudo-deterministic gap hamming communication
complexity still open.6

5Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc. 10th
Conference on Innovations in Theoretical Computer Science, 36:1–36:14, 2018, Feige 2019; Magen and
Naor 2022; Menuhin and Naor 2022

6Some progress: Dmytro Gavinsky. Unambiguous parity-query complexity. arXiv preprint
arXiv:2401.11274, 2024

25/25

Conclusion
Deterministic Random seed Random tape Random oracle

▶ Unlike in the static setting, the example of Missing Item Finding shows that
space-efficient streaming algorithms in the adversarial setting may require a
random tape or random oracle.

▶ Lower bound methods:
▶ Random tape: Recursive structure of MIF algorithms + adversary iteratively

searching for information on past states + a useful property when search cannot
progress

▶ Random seed: use semi-generic reduction to pseudo-deterministic
▶ Pseudo-deterministic: generalize deterministic proof + alternate establishing

canonical and actual algorithm properties

1/21

Bibliography I

Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal,
Alec Sun, David P. Woodruff, and Samson Zhou. The white-box
adversarial data stream model. In Proc. 41st ACM Symposium on
Principles of Database Systems, pages 15–27, 2022.

Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph
coloring in the streaming model. In Proc. 54th Annual ACM
Symposium on the Theory of Computing, pages 261–274, 2022.

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially
robust streaming via dense-sparse trade-offs. In Symposium on
Simplicity in Algorithms (SOSA), pages 214–227, 2022.

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and
Eylon Yogev. A framework for adversarially robust streaming
algorithms. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 63–80, 2020.

2/21

Bibliography II

Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of
sampling. In Proc. 39th ACM Symposium on Principles of Database
Systems, pages 49–62. ACM, 2020.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially
robust coloring for graph streams. In Proc. 13th Conference on
Innovations in Theoretical Computer Science, 37:1–37:23, 2022.

Uriel Feige. A randomized strategy in the mirror game. arXiv
preprint arXiv:1901.07809, 2019.

Dmytro Gavinsky. Unambiguous parity-query complexity. arXiv
preprint arXiv:2401.11274, 2024.

Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and
David P. Woodruff. Pseudo-Deterministic Streaming. In Proc. 20th
Conference on Innovations in Theoretical Computer Science,
volume 151, 79:1–79:25, 2020.

3/21

Bibliography III

Sumegha Garg and Jon Schneider. The Space Complexity of Mirror
Games. In Proc. 10th Conference on Innovations in Theoretical
Computer Science, 36:1–36:14, 2018.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and
Uri Stemmer. Adversarially robust streaming algorithms via
differential privacy. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer.
Separating adaptive streaming from oblivious streaming using the
bounded storage model. In Advances in Cryptology - CRYPTO 2021 -
41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part III,
volume 12827 of Lecture Notes in Computer Science, pages 94–121.
Springer, 2021.

4/21

Bibliography IV

Roey Magen. Are we still missing an item? arXiv preprint
arXiv:2401.06547, 2024.

Roey Magen and Moni Naor. Mirror games against an open book
player. In 11th International Conference on Fun with Algorithms
(FUN 2022), volume 226, 20:1–20:12, 2022.

Boaz Menuhin and Moni Naor. Keep that card in mind: card guessing
with limited memory. In Proc. 13th Conference on Innovations in
Theoretical Computer Science, 107:1–107:28, 2022.

Ilan Newman. Private vs. common random bits in communication
complexity. Inform. Process. Lett., 39(2):67–71, 1991.

Noam Nisan. Pseudorandom generators for space-bounded
computation. In Proc. 22nd Annual ACM Symposium on the Theory
of Computing, pages 204–212, 1990.

5/21

Bibliography V

Noam Nisan. On read once vs. multiple access to randomness in
logspace. Theoretical Computer Science, 107(1):135–144, 1993.

Manuel Stoeckl. Streaming algorithms for the missing item finding
problem. In Proc. 34th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 793–818, 2023. Full version at arXiv:2211.05170v1.

Manuel Stoeckl. On adaptivity and randomness for streaming
algorithms. PhD thesis, Dartmouth College, 2024.

Jun Tarui. Finding a duplicate and a missing item in a stream. In
Proc. 4th International Conference on Theory and Applications of
Models of Computation, pages 128–135, 2007.

6/21

Bonus slides

1. State machine views (of randomness types, models.)

2. Random oracle algorithm explanation

3. Random-seed to pseudo-deterministic explanation

4. Full statements of main theorems

5. Reduction step for random tape lower bound

6. Simplified FindCommonOutputs

7. Related work

7/21

State machine perspective: static setting

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

8/21

State machine perspective: adversarial setting

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

9/21

State machine perspective: white-box adversarial setting

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

10/21

State machine perspective: deterministic

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

11/21

State machine perspective: random seed

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

R

12/21

State machine perspective: random tape

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

R R R R RR

13/21

State machine perspective: random oracle

Algorithm
state

Adversary

Outputs

Input
data stream

o0

s0 s1 s2 s3 s4

o1 o2 o3 o4

e1 e2 e3 e4 e5

...

R

14/21

Random oracle algorithm

▶ In “random sample” approach, S can be drawn from oracle randomness
▶ If always outputting least available element of S, can efficiently encode removed

elements as union of contiguous and sparse sets

Input set

Algorithm state

Output

4 9 6 5 14 16 17 1 2 15 10 3 12 7 13 0 11 8

14

4 9 6 5 17 2 15 7 0 8

15/21

Random seed to pseudo-deterministic

Consider adversary with Θ(z) epochs of length t = Θ(ℓ/z).

For each epoch:
1. If ∃ subsequence x of length t for which, conditioned on history, algorithm

output sequence has high entropy (≥ 0.5 bits, say):
▶ Send x to algorithm. Next epoch.

2. Otherwise, for all possible x, conditional entropy of outputs is low (≤ 0.5 bits)
which implies some particular output sequence occurs with probability ≥ 2

3 .
7.

This is pseudo-determinism.

Observe: entropy of random seed is limited by z, so case 1 can only occur ≥ 4z
times, a constant fraction of the time.8

7Say all output sequences have ≤ 2
3
probability. Then there exists a subset S of possible outputs with

net probability between 1
3
and 2

3
; H (X ∈ S) ≥ − 1

3
log 1

3
− 2

3
log 2

3
≥ 0.798.

8H (S) ≥ H (O1) + H (O2|O1) + . . .) ≥ 1
2
· 1
2
· 4z; last step is hiding expansion into events via

H (X|Y) =
∑

p (y)H (X|Y = y) and filtering by ≥ 4z type-1 steps.

16/21

Formal theorem statements

Theorem 9.
Random tape δ-error adversarially robust algorithms for MIF (n, ℓ), with δ ≤ ℓ

27n ,
require space:

Ω

(
max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
ℓ
15
32

logn ℓ
)

Theorem 10.
There is a family of adversarially robust random tape algorithms, where for MIF (n, ℓ)
the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
3

d(d−1)

⌉
(log ℓ)2 + min

(
ℓ, log 1

δ

)
log ℓ

)

bits of space, where d = max
(
2,min

(
⌈log ℓ⌉ ,

⌊
2 log n/4

log(16ℓ)

⌋))
. When δ = 1/poly (n) a

weakened space bound is O
(
ℓlogn ℓ (log ℓ)2 + log ℓ

)
.

17/21

Formal theorem statements

Theorem 11.
Pseudo-deterministic δ-error random oracle algorithms for MIF (n, ℓ) require

Ω

(
min

(
ℓ

log 2n
ℓ

+
√
ℓ,

ℓ log 1
2δ(

log 2n
ℓ

)2 log n
+

(
ℓ log 1

2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly (n) and ℓ = Ω(log n), this is

Ω

(
ℓ(

log 2n
ℓ

)2 + (ℓ log n)1/4
)

Theorem 12.
Adversarially robust random seed algorithms for MIF (n, ℓ) with error ≤ 1

6 require
space:

Ω

(
ℓ2

n
+

√
ℓ

(log n)3
+ ℓ1/5

)

18/21

Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W

18/21

Reduction step: searching for information must stop

1. Adversary sends ℓ/2 random elements
▶ Let ρ be resulting algorithm state
▶ Not enough space to store all random elements: algorithm must overestimate, and

only considers elements in a set Hρ to be safe
▶ Typically |Hρ| = O

(
zn
ℓ

)
2. Adversary tries to identify Hρ, in Θ(z) epochs

▶ Have a possible set Hσ for each possible state σ; making an output outside Hσ is
risky if σ = ρ

▶ Each epoch, either:
(a) There exists a “sub-adversary” for next Θ

(
ℓ
z

)
steps which likely rules out half the

remaining candidate Hσ values. If so, run it!
(b) There exists a set W of size O

(
zn
ℓ

)
which probably contains all the next Θ

(
ℓ
z

)
algorithm outputs, no matter what

▶ Case (a) is unlikely to happen Θ(z) times – might end up ruling out Hρ itself
▶ Case (b): DONE – algorithm solves MIF

(
O
(
zn
ℓ

)
,Θ
(
ℓ
z

))
with inputs in W

19/21

Very simplified proof sketch

Generalization of deterministic lower bound from Stoeckl 2023

▶ For any state σ, integer q, let FCO (σ, q) be set of “most common outputs” after
q more inputs, with size wq

▶ Interpret partial input stream x ∈ [n]⋆ as a state of the “canonical protocol”; then
FCO (x, q) gives most common canonical outputs

▶ We can recursively define FCO and hence “common outputs” so that we can
prove:
▶ If σ is a random state resulting from input x, then w.h.p. FCO (σ, q) = FCO (x, q)
▶ FCO (x, q) ∩ x = ∅
▶ |FCO (x, q)| ≈ 2q/z , where the algorithm uses z bits of state

▶ Pseudo-determinism used here: output built from dependent evaluations

▶ Since n ≥ |FCO (ϵ, ℓ)| ≈ 2ℓ/z, it follows z ⪆ ℓ
log n

20/21

FindCommonOutputs

▶ B is input to output function implemented by algorithm or canonical;
C ∈R [1, 2)d×N, x is stream prefix, and epochs are td + . . .+ t1 = ℓ; x has length
td + . . .+ tk+1 . S is set of possible canonical outputs. FCO (· · · , k) output size is
wk, with all wk ≥ 5

4wk−1.

FindCommonOutputs(B,C, x, k)9

if k = 1
return iteratively extracted w1 distinct elements, or error

Q← FCO (B,C, x ◦ ⟨1, . . . , tk⟩ , k− 1)
for each j ∈ S

fj ←
∣∣∣{y ∈ (Qtk) : j ∈ FCO (B,C, x ◦ sorted (y) , k− 1)

}∣∣∣
θ ← Ck,hwk−1/16 |S|
P←

{
j ∈ S : f(h)j ≥ θ

(|Q|
tk

)}
return first wk elements of Q ∪ P

9This includes a simplification not present in published work.

21/21

Related work

▶ Generic methods to convert static to adversarial setting: Ben-Eliezer, Jayaram,
Woodruff, and Yogev 2020; Ben-Eliezer and Yogev 2020, and recent diff. privacy
approaches (which use random-tape) Ben-Eliezer, Eden, and Onak 2022; Hassidim,
Kaplan, Mansour, Matias, and Stemmer 2020

▶ Static vs. adversarial separations: Assadi, Chen, and G. Sun 2022; Chakrabarti,
Ghosh, and Stoeckl 2022; Kaplan, Mansour, Nissim, and Stemmer 2021

▶ White-box adversaries: Ajtai, Braverman, Jayram, Silwal, A. Sun, Woodruff, and Zhou
2022

▶ Read-once vs read-multiple use of randomness: Nisan 199310

▶ Other work on Missing Item Finding and variants: Chakrabarti, Ghosh, and Stoeckl
2022; Magen 2024; Stoeckl 2023, 2024; Tarui 2007

10Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical Computer
Science, 107(1):135–144, 1993

	Problem and models
	Missing Item Finding
	Adversarial setting for streaming algorithms
	Types of randomness for streaming algorithms

	Our Results/Contribution
	Separations
	Random tape algorithm
	Random tape lower bound
	Pseudo-deterministic lower bound

	Open problems
	Summary
	Appendix
	Appendix
	References

